首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
This paper reports a comparative study of propylene–ethylene copolymer (EP) nanocomposites synthesized using zinc‐ion (Zn2+)‐coated nanosilica (ZNS) and the diglycidyl ether of bisphenol‐A (DGEBA, an epoxy resin)‐modified zinc‐ion‐coated nanosilica (EZNS) as nanofillers. These nanocomposites were prepared using the ‘melt mixing’ method at a constant loading level of 2.5 wt%. This loading level is much lower than that used for fillers in conventional composites. The EP nanocomposites were characterized using wide‐angle X‐ray diffractometer (WAXD), a thermo gravimetric analyzer (TGA), a differential scanning calorimeter (DSC), a dynamic mechanical analyzer (DMA) and scanning electron microscopy (SEM). DMA results showed a higher storage modulus for EP‐epoxy‐modified Zn2+‐coated nanosilica nanocomposite (EP‐EZNS) with respect to EP and EP‐Zn2+‐coated nanosilica nanocomposite (EP‐ZNS). In addition, TGA thermograms showed an increase in degradation temperature of EP in the presence of EZNS. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
《Polymer Composites》2017,38(10):2261-2271
High‐performance nanosilica composites based on epoxy‐modified polybenzoxazine matrices are developed. Chemorheological study of benzoxazine–epoxy resin mixtures reveals that processing window of the benzoxazine resin (BA‐a) is substantially broadened with an addition of the liquid epoxy. Glass transition temperature (T g) of the BA‐a copolymerized with epoxy resin shows a synergistic behavior with a maximum T g value (174°C) at the benzoxazine–epoxy mass ratio of 80:20. The copolymer at this composition is also used as a matrix for nano‐SiO2 composites. A very low melt viscosity of the benzoxazine–epoxy mixtures promotes good processability with the maximum attainable nano‐SiO2 loading up to 35 wt%. From scanning electron microscopy investigation, fracture surface of the 35 wt% nano‐SiO2‐filled benzoxazine–epoxy composite reveals relatively homogeneous distribution of the nano‐SiO2 in the copolymer with good particle wet‐out. In addition, very high reinforcing effect was also observed in such high content of the nano‐SiO2, i.e., about 2.5 times in modulus improvement. This improvement is attributed to the strong bonding between the copolymer matrix and the nano‐SiO2 through ether linkage as confirmed by Fourier‐transform infrared investigation. POLYM. COMPOS., 38:2261–2271, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
Epoxy‐based hybrid structural composites reinforced with 14 nm spherical silica particles were investigated for mechanical properties as a function of nanosilica loading fractions. Composites were fabricated using continuous glass or carbon fiber of unidirectional architecture and nanosilica dispersed epoxy, through resin film infusion process. Uniform dispersion of nanoparticles in resin matrix was ensured by an optimized ultrasound‐assisted process. Although resin viscosity marginally reduces in the presence of nanosilica enabling a better control in composite manufacturing process, glass transition temperature of epoxy remained unaffected at low weight fractions. Compressive strength of hybrid glass or carbon fiber/epoxy composites showed more than 30–35% increase with nanosilica at a concentration as low as 0.2 wt%. Tensile and compressive properties of hybrid composites in transverse direction to the reinforcement remained unaffected. POLYM. COMPOS. 37:1216–1222, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
This article reports a comparative study of polypropylene (PP) nanocomposites synthesized with nanosilica (NS) and diglycidyl ether of bisphenol A, an epoxy‐resin‐grafted nanosilica (ENS), as nanofillers. These nanocomposites were prepared with the melt‐mixing method at a constant loading level of 2.5 wt %; this loading level was much lower than that used for fillers in conventional composites. The effects of pure NS and ENS on the thermal, structural, mechanical, and dynamic mechanical properties of PP were analyzed with wide‐angle X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopy. The transmission electron microscopy studies showed a better dispersion of ENS in the PP matrix, that is, in the polypropylene‐epoxy‐resin‐grafted nanosilica (PP–ENS) nanocomposite, in comparison with NS in the PP matrix, that is, in the polypropylene–nanosilica (PP–NS) nanocomposite. Also, the thermogravimetric analysis results showed a higher thermal stability for PP–ENS than PP–NS. Furthermore, the dynamic mechanical analysis studies showed an increase in the elastic modulus and glass‐transition temperature for PP–ENS with respect to PP–NS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2117–2124, 2006  相似文献   

5.
A series of epoxy resin (EP)/octa(aminpropyl)silsesquioxane (POSS‐NH2) organic–inorganic hybrid composites (EP/POSS‐NH2 100/0, 95/5, 90/10, and 80/20 wt/wt) were prepared by melt casting and then curing. Viscoelastic and mechanical properties of these composites were studied by dynamic mechanical analysis and mechanical testing, respectively. Scanning electron microscopy was used to study of the micromorphologies of the composites and to elucidate the toughening mechanisms of POSS‐NH2. POSS units incorporated into the epoxy network showed good compatibility with the resin matrix. Phase separation was not observed even at high POSS content (20 wt%). Incorporation of POSS macromer into the epoxy network after curing increased the glass transition temperature, slightly narrowed the temperature range widths of the glass transition, and lowered the intensities of their loss moduli peaks of the resultant composites. The glass transition temperature of EP/POSS‐NH2 composites increased significantly with increasing POSS content at lower POSS content (<10 wt%), while increased slightly at higher POSS content. Both impact and flexural strengths of the hybrids reached their optimum values when 10 wt% content of POSS was introduced. POLYM. COMPOS., 28:175–179, 2007. © 2007 Society of Plastics Engineers.  相似文献   

6.
Solid particles used to toughen polymer can induce shear bands and crazing to release the internal stress of polymer. Herein, SiO2 particles with different sizes were prepared by sol–gel method and modified by triethylenetetramine (TETA) in water. 1, 2, 3 and 4 wt% of SiO2 and SiO2-TETA particles are used to toughen epoxy resin (EP). They can form chemical bond with EP to heighten polymer's storage modulus and glass transition temperature. SiO2-TETA containing active hydrogen atoms is a better cross-linking agent than SiO2. Both SiO2 and SiO2-TETA particles possess obvious strengthening effects on EP. Their toughening effect depends on size. The 100 nm SiO2 nanoparticles showed better toughening performance than 300 or 500 nm SiO2 particles attributing to their higher specific surface area. The impact strength of EP/SiO2-TETA composites with 3 wt% of 100 nm particles is 16.26 kJ/m2, which is 27.67% and 8.00% higher than EP and EP/SiO2 respectively. In addition, its tensile strength is 63.13 MPa, which is higher than the other is too. The barrier effect of solid particles can effectively improve the heat and ultraviolet resistant properties of EP matrix; as a result, their anti-aging property is improved significantly.  相似文献   

7.
Nanosilica particles are functionalized by in situ surface‐modification with trimethyl silane and vinyl silane. Resultant reactive nanosilica (coded as RNS) contains double bonds and possesses good compatibility with vinyl chloride (VC) and polyvinyl chloride (PVC). This makes it feasible for RNS to copolymerize with VC generating RNS/PVC composites via in situ suspension polymerization. As‐prepared RNS/PVC composite resins are analyzed by means of FTIR. The tensile strength and impact strength of compression‐molded RNS/PVC composites are measured and compared with that of compression‐molded PVC composites doped with dispersible nano‐SiO2 particles (abridged as DNS) surface‐modified with trimethyl silane alone. Moreover, the thermal stability of compression‐molded RNS/PVC and DNS/PVC composites is evaluated by thermogravimetric analysis. It has been found that RNS/PVC composites possess greatly increased impact strength and tensile strength than PVC matrix, while DNS/PVC composites possess higher impact strength than PVC matrix but almost the same tensile strength as the PVC matrix. This implies that DNS is less effective than RNS in improving the mechanical strength of PVC matrix. Particularly, RNS/PVC composites prepared by in situ suspension polymerization have much higher mechanical strength than RNS/PVC composites prepared by melt‐blending, even when their nanosilica content is only 1/10 of that of the melt‐blended ones. Besides, in situ polymerized RNS/PVC and DNS/PVC composites have better thermal stability than melt‐blended nanosilica/PVC composites. Hopefully, this strategy, may be extended to fabricating various novel high‐performance polymer‐matrix composites doped with organically functionalized nanoparticles like RNS. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Kunyan Wang  Yu Zhang 《Polymer》2009,50(6):1483-1490
Poly(trimethylene terephthalate)/polybutadiene grafted polymetyl methacrylate (PB-g-PMMA, MB) blends were prepared by melt processing with varying weight ratios (0-5 wt%) of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as a reactive compatibilizer. DMA result showed PTT was partially miscible with MB particles in the presence of the compatibilizer. Fourier transform infrared (FTIR) and rheological measurements further identified the reactions between PTT and DGEBA epoxy resin. Scanning electron microscopy (SEM) displayed that the core-shell structured modifiers exhibit a smaller dispersed domain size with the addition of DGEBA epoxy resin. Mechanical tests showed the impact and tensile properties of PTT blends are improved by the introduction of DGEBA epoxy resin to the blends. SEM and TEM results showed shear yielding of PTT matrix and cavitation of rubber particles were the major toughening mechanisms.  相似文献   

9.
Multiwall carbon nanotubes (MWNTs) were modified by three methods, namely, oxidizing the tubes and opening both ends, filling the tubes with Ag, and grafting the tubes with hexamethylene diamine. Modified MWNTs/epoxy composites were prepared by melt‐mixing epoxy resin with the tubes. Transmission electron microscope images showed that the modified MWNTs can be dispersed in the epoxy matrix homogeneously. The dielectric behaviors and mechanical properties of the composites were investigated. The dielectric and mechanical properties of the modified MWNTs/epoxy composites were considerably improved compared with those of the epoxy matrix. The tensile strengths of the Ag‐filled, opened, and grafted MWNTs composites at the same filler content of 1.1 wt% were higher by ~30.5%, 35.6%, and 27.4%, respectively, than that of neat epoxy. The Izod notched impact strength of the grafted MWNTs/epoxy composite with filler content of 1.1 wt% was approximately four times higher than that of neat epoxy. A dielectric constant of ~150 of the composite with 1.1 wt% Ag‐filled nanotubes was observed in the low‐frequency range, which was ~40 times higher than that of the epoxy matrix. The proper modification of nanotubes provides a way to improve the properties of the polymer‐based composites. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

10.
Thermoplastic natural rubber nanocomposites based on epoxidized natural rubber (ENR) and polypropylene blends at a fixed blend ratio of 50/50 wt% reinforced with small amount (2.5 wt%) of nanosilica (SiO2) were prepared by melt‐mixing through three different incorporation sequences in an internal mixer. The effects of incorporation techniques on morphology, crystallization behavior, mechanical properties, dynamic, rheological characteristics, and thermal resistance of thermoplastic natural rubber (TPNR) nanocomposites were investigated. It was found that the dispersion of nanosilica in TPNRs was significantly dependent on the incorporation sequence. In the case where SiO2 was premixed in ENR before blending with polypropylene (PP), the final morphology showed the good dispersion of SiO2 in ENR phase, while the SiO2 particles were localized near the PP interface when SiO2 was premixed the in PP first. Whereas, when the three components were simultaneously mixed, the SiO2 particles were mainly dispersed in the PP phase. It was also found that the improvements of Young's modulus, tensile strength, damping behavior, and thermal stability of TPNR nanocomposites were more pronounced when the SiO2 particles localized in ENR phase. By contrast, the presence of SiO2 particles in PP domain either near the interface or inside the PP phase affected the reduction in crystallinity of PP phase and showed a negative effect on mechanical properties due to the poor interface interaction between PP and SiO2 particles. POLYM. COMPOS., 33:1911–1920, 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
To improve the thermal conductivity of epoxy resin, tensile way was used to orient the molecular chain of epoxy resin with SiO2 particles filled. In this article, SiO2/Epoxy composites which had approximately one‐dimensional lattice structure were prepared. The heat generated by LED chip rapidly passed along the direction of the one‐dimensional orientation in SiO2/Epoxy composites. The results showed that the thermal conductivity of oriented composites increased with the increase of silica concentration and draw ratio (If S is the cross‐sectional areas of composites at the mold outlet, S0 is the cross‐sectional areas of composites after molding set, and draw ratio is S/S0). With the addition of 50 wt% SiO2 to the epoxy resin, the thermal conductivity of oriented SiO2/Epoxy composites with the draw ratio of 4 was 0.873 W/m K, which was 2.55 times that of unoriented SiO2/Epoxy composites. And a thermal conductivity, 5.97 times that of the epoxy resin, was obtained with 80 wt% SiO2 and the draw ratio of 4. Nevertheless, the relative permittivities of epoxy composites which had 50 wt% SiO2 with the draw ratio of 4 are stable with increasing frequency. POLYM. COMPOS., 37:818–823, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
Modification of nanoparticles through graft polymerization is able to change the chemical nature of the particles' surfaces and provides an effective means for the preparation of nano‐fillers specified for composites manufacturing. The present work focuses on the mechanical role of grafted nano‐SiO2 particles in high density polyethylene composites prepared by melt compounding. The experimental results show that at a content of 0.75 vol%, the modified nano‐silica results in a rise in tensile stiffness, tensile strength and impact strength of the composites. The grafted nanoparticles can improve the mechanical performance of the matrix polymer more effectively than the untreated version. In addition, a further enhancement of the composites stiffness and strength can be achieved by crosslinking the concentrated masterbatches, which has not yet been revealed in the authors' previous works on grafted nano‐SiO2 particles/polypropylene composites. It is thus revealed that the introduction of the grafting polymers onto the nanoparticles increases the tailorability of the composites.  相似文献   

13.
Three types of silane coupling agents, γ‐aminopropyltriethoxysilane, γ‐glycidoxypropyltrimethoxysilane, and γ‐methacryloxypropyltrimethoxysilane, were used as modifiers to modify the surface of the nanosilica, respectively, and the nanocomposites of the epoxy resin filled with nano‐sized silica modified by three silane coupling agents were prepared by physical blending. The properties of the modified silica nanoparticles were characterized by Fourier transform infrared spectrum and particle‐size analyzer. The microstructure, mechanical behavior, and heat resistant properties of the nanocomposites were investigated by transmission electron microscopy, scanning electron microscopy, thermo gravimetric analyses, differential thermal gravity, differential scanning calorimetry, and flexural tests. The results showed that these modifiers are combined to the surfaces of nanosilica by the covalent bonds, and they change the surface properties of nanosilica. The different structures of coupling agents have different effects on the dispersibility and stability of modified particles in the epoxy matrix. In comparison, the silica nanoparticles modified by γ‐glycidoxypropyltrimethoxysilane exhibit a good dispersivity. The nanocomposites with 4 wt% weight fraction nanosilica modified by γ‐glycidoxypropyltrimethoxysilane have higher thermal decomposing temperature and glass transition temperature than those of the other two composites with the same nanosilica contents, and they are raised by 43.8 and 8°C relative to the unmodified composites, respectively. The modified silica nanoparticles have good reinforcing and toughening effect on the epoxy matrix. The ultimate flexural strengths of the composites with 4 wt% nanoparticles modified by γ‐aminopropyltriethoxysilane, γ‐glycidoxypropyltrimethoxysilane, and γ‐methacryloxypropyltrimethoxysilane are increased by 10, 30, and 8% relative to the unmodified composites, respectively. The flexural fracture surfaces of modified composites present ductile fracture features. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
The curing behaviour, chemorheology, morphology and dynamic mechanical properties of epoxy ? polyphenylene oxide (PPO) blends were investigated over a wide range of compositions. Two bisphenol A based di‐epoxides ? pure and oligomeric DGEBA ? were used and their cure with primary, tertiary and quaternary amines was studied. 4,4′‐methylenebis(3‐chloro‐2,6‐diethylaniline) (MCDEA) showed high levels of cure and gave the highest exotherm peak temperature, and so was chosen for blending studies. Similarly pure DGEBA was selected for blending due to its slower reaction rate because of the absence of accelerating hydroxyl groups. For the PPO:DGEBA340/MCDEA system, the reaction rate was reduced with increasing PPO content due to a dilution effect but the heat of reaction were not significantly affected. The rheological behaviour during cure indicated that phase separation occurred prior to gelation, followed by vitrification. The times for phase separation, gelation and vitrification increased with higher PPO levels due to a reduction in the rate of polymerization. Dynamic mechanical thermal analysis of PPO:DGEBA340/MCDEA clearly showed two glass transitions due to the presence of phase separated regions where the lower Tg corresponded to an epoxy‐rich phase and the higher Tg represented the PPO‐rich phase. SEM observations of the cured PPO:DGEBA340/MCDEA blends revealed PPO particles in an epoxy matrix for blends with 10 wt% PPO, co‐continuous morphology for the blend with 30 wt% PPO and epoxy‐rich particles dispersed in a PPO‐rich matrix for 40wt% and more PPO. © 2014 Society of Chemical Industry  相似文献   

15.
In previous studies, we reported the linear and nonlinear rheological properties of three‐component composites consisting of acrylic polymer (AP), epoxy resin (EP), and various SiO2 contents (AP/EP/SiO2) in the molten state. In this study, the dynamic mechanical properties of AP/EP/SiO2 composites with different particle sizes (0.5 and 8 μm) were investigated in the glass‐transition region. The EP consisted of three kinds of EP components. The α relaxation due to the glass transition shifted to a higher temperature with an increase in the volume fraction (?) for the AP/EP/SiO2 composites having a particle size of 0.5 μm, but the α relaxation scarcely shifted for the composite having a particle size of 8 μm as a general result. This result suggested that the SiO2 nanoparticles that were 0.5 μm in size adsorbed a lot of the low‐glass‐transition‐temperature (Tg) component because of their large surface area. The AP/SiO2 composites did not exhibit a shift in Tg; this indicated that the composite did not adsorb any component. The modulus in the glassy state (Eg) exhibited a very weak &phis; dependence for the AP/EP/SiO2 composites having particle sizes of 0.5 and 8 μm, although Eg of the AP/SiO2 composites increased with &phis;. The AP/EP/SiO2 composites exhibited a peculiar dynamic mechanical behavior, although the AP/SiO2 composites showed the behavior of general two‐component composites. Scanning electron microscopic observations indicated that some components in the EP were adsorbed on the surface of the SiO2 particles. We concluded that the peculiar behavior of the AP/EP/SiO2 composites was due to the selective adsorption of the EP component. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40409.  相似文献   

16.
Nanocomposites with varying concentrations of nanosized silicon dioxide particles were prepared by adding nanosilica to interpenetrating polymer networks (IPN)s of polyurethane and epoxy resin (PU/EP). The PU/EP IPNs and nanocomposites were studied by dynamic mechanical analysis, scanning electronic microscopy, wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The result showed that adding nanosize silicon dioxide can improve the properties of compatibility, damping and phase structure of IPN matrices. Copyright © 2003 Society of Chemical Industry  相似文献   

17.
ABSTRACT

Unmodified epoxy resins based on bisphenol A exhibit brittleness and low elongation after cure. This article reports the results of a study for improving the properties of epoxy resin by blending with suitable thermosets. Hybrid polymer networks of diglycidyl ether of bisphenol A (DGEBA) resin with epoxidized phenolic novolac resins (EPN) containing phenol and formaldehyde in different stoichiometric ratios were prepared by physical blending. The modified epoxy resins were found to exhibit improved mechanical and thermal properties compared to the neat resin. DGEBA resins containing 2.5 to 20 wt% of epoxidized novolac resins (EPN) prepared in various stoichiometric ratios (1:0.6, 1:0.7, 1:08, and 1:0.9) between phenol and formaldehyde were cured using a room temperature amine hardener. The cured samples were tested for mechanical properties such as tensile strength, modulus, elongation, and energy absorption at break. All the EPNs are seen to improve tensile strength, elongation, and energy absorption at break of the resin. The blend of DGEBA with 10 wt% of EPN-3 (1:0.8) exhibits maximum improvement in strength, elongation, and energy absorption. EPN loading above 10 wt% is found to lower these properties in a manner similar to the behavior of any filler material. The property profiles of epoxy–EPN blends imply a toughening action by epoxidized novolac resins and the extent of modification is found to depend on the molar ratio between phenol and formaldehyde in the novolac.  相似文献   

18.
A study was done of jute composite using a polymer matrix of epoxidized Novolac resin (ENR), diglycidyl ether of bisphenol A (DGEBA)–based epoxy, and their blends with different weight percentages of the resins. It was found that on blending ENR with DGEBA, the storage modulii at room temperature are enhanced by about 100% or more in the case of 30 and 40% ENR‐containing matrices, whereas the enhancement in the case of 20 and 12% ENR‐containing matrices is only 50% that of the pure matrix. It was also observed that the tan δ peak heights of the composites containing 30 and 40% ENR are closer to that of 20% ENR‐containing composite. The probable explanation drawn on the basis of experimental findings of DMA and mechanical analysis is that by blending ENR with DGEBA epoxy it is possible to manufacture jute composites with increased stiffness without sacrificing their ductility. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2800–2807, 2002  相似文献   

19.
Polypropylene/ethylene-propylene rubber/nanosilica (PP/EPR/nano-SiO2) composites were prepared by a melt blending masterbatch process using a Brabender mixer. In order to improve the interfacial adhesion and achieve diverse desired properties of the composites, nanosilica surface silylation by means of two silane coupling agents: N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane (AEAPTMS) and 3-methacryloxypropyltrimethoxysilane (MPTMS) was explored. The composites were also compatibilized using three compatibilizers: methyl methacrylate grafted PP (MMA-g-PP), glycidylmethacrylate grafted PP (GMA-g-PP) and maleic anhydride grafted PP (MAH-g-PP). The properties of the blends and the composites were examined using tensile and Izod impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (ATG) and scanning electron microscopy (SEM). According to the mechanical property evaluations, the incorporation of nano-SiO2 particles into PP/EPR blend improved the tensile strength and Young’s modulus of the composites. The elongation and Izod impact strength were adversely affected. A significant improvement in the mechanical properties was obtained for the composites with AEAPTMS-SiO2 and MAH-g-PP. The DSC results indicated that the incorporation of the modified silica and MAH-g-PP increased the crystallinity of the composites. However, no significant variation in the crystallinity was observed as a result of the addition of MMA-g-PP and GMA-g-PP. The TGA results revealed that the composites exhibit a higher thermal stability than that of the neat matrix. SEM micrographs of the fractured surfaces revealed a two-phase morphology with EPR nodules being dispersed in the PP matrix. SEM also indicated that the incorporation of MAH-g-PP into PP/EPR composites contributes to a better dispersion of the EPR phase and nano-SiO2 particles in the polymer matrix.  相似文献   

20.
The polyamide‐6 materials were mixed with nano‐silica modified by γ‐glycidoxypropyltrimethoxysilane (GPS) via a melt blending process. The idea was to study the correlation between content of GPS and PA6/silica interfacial interactions as well as mechanical properties of PA6/silica composites. The epoxy groups in GPS could react with –COOH and –NH2 in PA6 to produce the covalent bond and hydrogen bonding based on FTIR chart, TG analysis, and TEM analysis results. The DSC results show that nanosilica could encourage the formation of the hydrogen bonded structure of the α‐PA6 crystals. However, the over GPS could confine the motion of polyamide‐6 and decrease the generation of α‐PA6 crystals resulted the decrease of mechanical properties. So the amount of epoxy groups grafted on nano‐silica has a threshold effect on strength of PA6. POLYM. COMPOS., 35:435–440, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号