首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Zeolite 4A was incorporated into poly(vinylidene fluoride) (PVDF) matrix to prepare mixed matrix membranes (MMMs). The objective of this study was to investigate the effects of the inorganic filler on the structural properties of the MMMs. The resulting membranes were characterized using thermogravimetric analysis, differential scanning calorimetry, X‐ray diffraction, contact angle tests, and scanning electron microscopy (SEM). The mechanical properties of the membranes were determined using a tensile stress–strain machine. To fully study the interface properties between the inorganic fillers and polymer chains, the densities of the membranes were experimentally determined and compared with the theoretical values. The experimental densities of the composite membranes were lower than those of the theoretical values. The void volume fractions were calculated accordingly. The single gas (He, CO2, O2, and N2) permeabilities of the resulting membranes were carried out. The highest permeabilities of 14.65, 6.62, 1.01, and 0.3 Barrer for He, CO2, O2, and N2, respectively, were obtained by PVDF/4A 32% composite membrane; whereas the highest selectivities of 105.5, 31.5, and 3.3 for He/N2, CO2/N2, and O2/N2, respectively, were obtained using PVDF/4A 16% composite membrane. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
A theoretical model is used to predict O2, N2, CO2, CH4, N2O, and Ar gaseous penetrants’ permeabilities through zeolitic filler particles of 4A, DDR and silicalite-1 using their adsorption and diffusion data with minimum and maximum absolute relative errors (AREs) as 4.3 and 6.9% for N2 and CH4 permeabilities through 4A zeolite, respectively. Average AREs for 4A zeolites incorporated in mixed matrix membranes (MMMs) were found for O2 permeability using modified Felske’s and Maxwell’s models as 1.2 and 55.6%, respectively. Those for DDR/MMMs and silicalite-1/MMMs CO2 permeabilities were found as 0.7 and 1.8% for Bruggeman’s and Maxwell’s models and 3.1 and 22.3% for Maxwell’s and Lewis-Nielsen’s models, respectively.  相似文献   

3.
With MOFs of Cu3(BTC)2 and ZIF‐8 as the dispersed phases and four polyimides with CO2 permeabilities ranging from 1.36 to 564 barrer as the continuous phase, the influence of metal organic frameworks on the gas‐separation properties of mixed‐matrix membranes (MMMs) was investigated. The results show that the gas permeabilities of all of the prepared MMMs greatly increased and even largely exceeded the predicted value of the Bruggeman model; for example, with the same Cu3(BTC)2 loading of 21.3 vol %, the O2 permeability increase rate of our prepared Cu3(BTC)2/Matrimide 5218‐20 MMMs was 2.26 times, whereas that predicted by the Bruggeman model was only 1.05 times. In addition, when the gas permeability of the polymeric phase was far lower than the dispersed phase of ZIF‐8 or Cu3(BTC)2 compared with ZIF‐8, which had a particle size (R) around 150 nm, Cu3(BTC)2 of 5–15 µm showed a little better enhancing effect on the gas‐permeation performance of the MMMs. In addition to the properties of the dispersed and continuous phases, we speculated that the ratio between R of the dispersed phase to the membrane thickness (L) played an important role for MMMs; the larger R/L was, the greater the gas permeability of the MMMs was. This speculation was initially evidenced by the ZIF‐8/ODPA/TMPDA‐20 MMMs with different Ls. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45728.  相似文献   

4.
The gas transport behaviors of O2, N2, CO2 and CH4 were investigated in mixed matrix membranes (MMMs) prepared from polydimethylsiloxane (PDMS) filled with surface functionalized silica (SiO2) nanoparticles. SiO2 surface modification was performed through silanization using chlorodimethyl silane. FTIR confirmed the presence of dimethyl silane on SiO2 (Si-DMS) whereas elemental analysis showed 94.2% successful modification. Thermal gravimetric analysis revealed the improved thermal stabilities of PDMS MMMs. Field emission scanning electron microscopy revealed the uniform distribution of Si-DMS within the membrane. The effect of Si-DMS in gas permeabilities (P) was in contrast to the Maxwell model prediction. Enhanced P values of all gases in PDMS MMMs (as compared to pure PDMS) were associated to the improvement in diffusion coefficients (Dm) despite the reduction in gas solubility coefficients. The increase in Dm values was attributed to the higher free volumes in PDMS MMMs. However, slight declines (<8% of pure PDMS) in selectivities were observed. Overall, PDMS MMMs have improved performances due to enhanced gas permeabilities.  相似文献   

5.
Incorporation of inorganic fillers into Polysulfone (PSF) to constitute mixed matrix membranes (MMMs) has become a viable solution to prevail over limitations of the pristine materials in natural gas sweetening process. Nevertheless, preparation of MMMs without defects and empirical investigation of membrane that exhibits characteristic of improved CO2/CH4 separation performance at experimental scale are difficult that require prior knowledge on compatibility between the filler and polymer. A computational framework has been conducted to construct validated PSF based MMMs using silica (SiO2) as inorganic fillers. It is known that nanosized SiO2 can coexist in varying polymorph configurations (ie, α-Quartz, α-Cristobalite, α-Tridymite) but molecular simulation study of SiO2 polymorphs to form MMMs is limited. Therefore, this work is a pioneering study to elucidate feasibility in facile utilization of polymorphs to improve gas separation performance of MMMs. Physical properties and gas transport behavior of the simulated PSF based MMMs with different SiO2 polymorphs and loadings have been elucidated. The optimal MMM has been found to be PSF/25 wt% α-Cristobalite at 55°C. The success in molecular simulation has shed light on how computational tools can provide understandings at molecular level to elucidate compatibility between varying pristine materials to MMMs for natural gas processing.  相似文献   

6.
In this study, three types of inorganic fillers—fumed nano‐SiO2, synthesized mesoporous MCM‐41, and zeolite 4A—were incorporated into P84 matrix to prepare mixed matrix membranes. The structural characteristics and transport properties of the resulting composite membranes were investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the dispersion of the filler particles in the composite membranes. TEM micrographs verified that there were no nonselective pores at the particle–polymer interfaces of the composite membranes. Differential scanning calorimetry tests were conducted to investigate the structure of the composite membranes. The glass transition temperatures (Tg) of the P84/MCM‐41 and P84/4A composite membranes were 11 and 30°C, respectively, above that of pure P84 membrane. But, the Tg value for the P84/SiO2 composite membrane decreased by 22°C when compared with that of the P84 membrane. The density of the composite membrane was also measured to calculate its fractional free volume. Gas permeation tests showed that, among the three synthesized composite membranes, the P84/SiO2 membrane had the best performance in terms of gas separation. P84/SiO2 membrane exhibited 20, 63, 59, and 45% increases in the permeabilities of He, O2, N2, and CO2, respectively, above those for the P84 membrane whilst maintaining comparable good selectivities. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Polyether‐block‐amide (Pebax)/graphene oxide (GO) mixed‐matrix membranes (MMMs) were prepared with a solution casting method, and their gas‐separation performance and mechanical properties were investigated. Compared with the pristine Pebax membrane, the crystallinity of the Pebax/GO MMMs showed a little increase. The incorporation of GO induced an increase in the elastic modulus, whereas the strain at break and tensile strength decreased. The apparent activation energies (Ep) of CO2, N2, H2, and CH4 permeation through the Pebax/GO MMMs increased because of the greater difficulty of polymer chain rotation. The Ep value of CO2 changed from 16.5 kJ/mol of the pristine Pebax to 23.7 kJ/mol of the Pebax/GO MMMs with 3.85 vol % GO. Because of the impermeable nature of GO, the gas permeabilities of the Pebax/GO MMMs decreased remarkably with increasing GO content, in particular for the larger gases. The CO2 permeability of the Pebax/GO MMMs with 3.85 vol % GO decreased by about 70% of that of the pristine Pebax membrane. Rather than the Maxwell model, the permeation properties of the Pebax/GO MMMs could be described successfully with the Lape model, which considered the influence of the geometrical shape and arrangement pattern of GO on the gas transport. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42624.  相似文献   

8.
In the present study, graphene oxide (GO) was incorporated into poly(vinylidene fluoride) (PVDF) and chemically modified PVDF (M‐PVDF) to prepare mixed matrix membranes (MMMs) for gas separation application. Performed analyses proved appropriate dispersion of exfoliated GO sheets in polymer matrices and sufficient compatibility at the interfacial phases. M‐PVDF based MMMs were thermally and mechanically more stable relative to the PVDF‐based MMMs. The oxygen containing functional groups in M‐PVDF was probably the main reason for this more stability. PVDF/GO MMMs rendered low gas permeability and high selectivity. Both impermeable GO sheets and crystalline phases of PVDF were responsible for such behavior. On the other hand, interestingly gas permeability of M‐PVDF/GO MMMs was enhanced while no substantial decline was recorded in gas selectivity. For instance, He and CO2 permeability was increased 12.46% and 25.89%, respectively, compared to the pure PVDF membrane. This behavior originated from functional groups of M‐PVDF and the interaction of these groups with GO sheets. Since GO often amplified gas barrier properties of polymers, such increscent would be appreciable. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46271.  相似文献   

9.
《分离科学与技术》2012,47(7):950-962
Mixed matrix membranes (MMMs) of polyimide (PI) and zeolite 13X, ZSM-5 and 4A were prepared by a solution-casting procedure. The effect of zeolite loading, pore size, and hydrophilicity/hydrophobicity of zeolite on the gas separation properties of these mixed matrix membranes were studied. Experimental results indicate that permeability of He, H2, CO2, and N2 increased with zeolite loadings. Selectivity of H2/N2 shows a slight improvement for low loadings of zeolites 13X and ZSM-5 but has a decreasing trend for zeolite 4A and high loadings of zeolites 13X and ZSM-5. In addition, selectivity of H2/CO2 remains low (1–3) while selectivity of CO2/N2 is significantly improved with the incorporation of the three zeolites in the polyimide membrane. Experimental permeabilities are higher than those predicted by the Maxwell model except for H2 and N2 permeabilities of the PI-4A system which are consistent with the predicted permeabilities. The proposed modified Maxwell model is capable of predicting the permeabilities of polyimide-zeolite 4A MMMs, but fails to simulate the permeability increase induced by interface voids in the polyimide-zeolite 13X and ZSM-5 systems.  相似文献   

10.
Interfacial void‐free mixed‐matrix membranes (MMMs) of polyimide (PI)/zeolite were developed using 13X and Linde type A nano‐zeolites and tested for gas separation purposes. Fabrication of a void‐free polymer‐zeolite interface was verified by the decreasing permeability developed by the MMMs for the examined gases, in comparison to the pure PI membrane. The molecular sieving effect introduced by zeolite 13X improved the CO2/N2 and CO2/CH4 selectivity of the MMMs. Separation tests indicated that the manufactured nanocomposite membrane with 30 % loading of 13X had the highest permselectivity for the gas pairs CO2/CH4 and CO2/N2 at the three examined feed pressures of 4, 8 and 12 atm.  相似文献   

11.
Mixed Matrix Membranes (MMMs) of UiO-66-NH2 nanoparticles dispersed in Cellulose Acetate (CA) were prepared with filler loading of 2–20 wt%. MMMs were tested for the upgradation of model biogas (60%–40%) mixture of CH4/CO2 at a feed pressure of 2 bar and 1.5 bar. Detailed characterization of MMMs was performed with Fourier transform infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), Differential scanning calorimetry (DSC), and Field emission scanning electron microscopy (FESEM) to investigate the physical and thermal properties. MMMs formed are defects-free, voids-free, and without polymer rigidification, indicating a better filler polymer interface. MMMs showed improved CO2 permeability while retaining the CO2/CH4 selectivity. The 10 wt.% UiO-66-NH2/CA MMM showed optimum gas separation performance with CO2 permeability of 11 Barrer and CO2/CH4 selectivity of 10. The UiO-66-NH2/CA MMMs performed better when compared to the pure CA membrane. The experimental permeability and selectivity data were compared with the predicted data using Maxwell, Lewis–Nielsen, Higuchi, and Bruggeman's model.  相似文献   

12.
Metal organic frameworks (MOFs) are supposed to be ideal additives for mixed matrix membranes (MMMs). In this article one kind of MOFs, Cu3(BTC)2, is synthesized, then directly incorporated into a model polymer (Ultem®1000) using N,N‐dimethylacetamide as solvent. Cu3(BTC)2 particles are uniformly dispersed and there are no interfacial defects in the prepared MMMs when Cu3(BTC)2 loading is not more than 35 wt %, seen in SEM images. Pure gas permeation tests show that gas permeability increases obviously with Cu3(BTC)2 loading increase, while ideal selectivities of CO2/N2 and CO2/CH4 are almost unchanged. For MMM with the best separation property, CO2 permeability increases about 2.6 times and CO2/N2 selectivity remains almost unchanged. Results about gas diffusivity and solubility indicate that gas diffusivity and solubility make contribution to gas permeability increase at the same time but in different ways. Gas permeation properties of MMMs are well predicted by Maxwell or Bruggeman model. © 2014 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40719.  相似文献   

13.
This article focused on segregation of low concentration CO2 from CO2/N2 mixture gas by implementing high‐performance facilitated transport mixed matrix membranes (MMMs) in large‐scale carbon capture techniques. These advanced, novel CO2‐selective membrane materials were developed by embedding silica nanoparticles at different loading into the poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) matrix using solution casting. In situ sol–gel technique was applied for the synthesis of the hydrophilic SiO2 nanoparticles. The compatibility of filler‐polymer matrix plays a crucial role in the optimization of the membrane performance. The dispersion and interaction of the filler into the polymer matrix were confirmed by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, contact angle tests, and swelling ratio analysis. Field emission scanning electron microscopy analysis of the synthesized MMMs established the homogeneous dispersion of the fillers in the polymer matrix. Owing to its good compatibility with PVA/PEG matrix, the inclusion of fillers significantly increased the overall separation efficiency of CO2 within the membrane. Compared to pristine PVA/PEG membrane, PVA/PEG/silica membrane with 3.34 wt % silica loading showed pronounced improvement in its gas separation properties with 78% augmentation in CO2 permeability and 45% enhancement in CO2/N2 selectivity for fixed conditions pertaining to sweep side water flow rate of 0.04 mL/min and 100 °C temperature. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46481.  相似文献   

14.
The present study deals with preparing mixed matrix membranes (MMMs), a new polysaccharide-based natural polymer used as a matrix with functionalized carbon nanotubes (FCNTs) and graphene oxide (GO) used as an inorganic filler. This work identified the effect of the inorganic fillers (FCNTs or GO) with naturally occurring polymer for gas separation. The incorporation of fillers improves the gas separation performance of MMMs. In GG/FCNTs MMMs, the selectivities of CO2/N2 and CO2/H2 were enhanced by 55.24% and 57.89%, respectively. Moreover, in GG/GO MMMs, the selectivities of CO2/N2 and CO2/H2 were improved by 99.50% and 50%, respectively. The membrane was characterized by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The SEM analysis of GG/GO MMMs reveals layered structure, and GG/FCNTs MMMs create passages to transport gases. The Universal testing machine (UTM) is used to analyze the mechanical properties of pristine and modified membranes.  相似文献   

15.
Dichlorobis(3‐hydroxy‐2‐methyl‐4‐pyrone)Zr(IV) was grafted onto different inorganic supports, namely SiO2, MAO‐modified SiO2, MCM‐41, Al2O3, and MgO. The resulting supported catalysts were shown to be active in ethylene polymerization using methylaluminoxane (MAO) as the catalyst. Catalysts were characterized by Rutherford Backscattering Spectrometry (RBS) and nitrogen adsorption method. The highest catalyst activities were observed for the zirconium complex supported on MCM‐41. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Mixed‐matrix membranes (MMMs) have shown great advantages but still face some challenges, such as the trade‐off between permeability and selectivity, stability, and the lack of efficient ways to enhance them simultaneously. Here, the fabrication of MMMs with metal‐organic frameworks derived porous carbons (MOF‐PCs) as fillers which exhibit selective‐facilitating CO2 transport passage originating from interactions between fillers and CO2 is showed. With the aid of the developed multicalcination method, MOF‐PCs with variable N‐contents were prepared and incorporated into PPO‐PEG matrix for the first time to prepare MMMs, which show excellent separation performance for CO2/CH4 mixture with a tunable separation performance by combining different N‐contents and surface areas of MOF‐PCs. Moreover, the developed MMMs have hydrothermal and chemical stability. This work not only presents a series of MMMs with both good separation properties and stability, it also provides useful information for guiding the fabrication of high performance MMMs for practical application. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3400–3409, 2018  相似文献   

17.
Membrane technology has emerged as a leading tool worldwide for effective CO2 separation because of its well-known advantages, including high surface area, compact design, ease of maintenance, environmentally friendly nature, and cost-effectiveness. Polymeric and inorganic membranes are generally utilized for the separation of gas mixtures. The mixed-matrix membrane (MMM) utilizes the advantages of both polymeric and inorganic membranes to surpass the trade-off limits. The high permeability and selectivity of MMMs by incorporating different types of fillers exhibit the best performance for CO2 separation from natural gas and other flue gases. The recent progress made in the field of MMMs having different types of fillers is emphasized. Specifically, CO2/CH4 and CO2/N2 separation from various types of MMMs are comprehensively reviewed that are closely relevant to natural gas purification and compositional flue gas treatment  相似文献   

18.
Polyaniline (PANI)/porous silica MCM‐41 (MCM‐41) composite was synthesized according to surface polymerization theory, and it was confirmed through comparing with PANI/solid silica (SiO2) by TGA and XPS techniques. The morphology and composition of the composite were also characterized by some techniques such as small‐angle XRD, N2‐adsorption isotherm, SEM, FTIR, and UV–vis. The thermal stability for the PANI/MCM‐41 composite was enhanced when compared with that of pure PANI. With the increase in the concentration of HCl, the doping degree increased and UV‐absorption peak at about 700 nm showed a red shift. The conductivity of the composite was enhanced by increasing the concentration of HCl. The results of FTIR showed that there was a strong interaction between PANI and MCM‐41. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2088–2094, 2006  相似文献   

19.
Polysulfone (PSf)‐based mixed matrix membranes (MMMs) with the incorporation of titanium dioxide (TiO2) nanoparticles were prepared. Distribution and agglomeration of TiO2 in polymer matrix and also surface of membranes were observed by scanning electron microscopy, transmission electron microscopy, and energy dispersive X‐ray. Variation in surface roughness of MMMs with different TiO2 loadings was analyzed by atomic force microscopy. Physical properties of membranes before and after cross‐linking were identified through thermal gravimetric analysis. At low TiO2 loadings (≤3 wt%), both CO2 and CH4 permeabilities decreased and consequently gas selectivity improved and reached to 36.5 at 3 bar pressure. Interestingly, PSf/TiO2 3 wt% membrane did not allow to CH4 molecules to pass through the membrane and this sample just had CO2 permeability at 1 bar pressure. Gas permeability increased considerably at high filler contents (≥5 wt%) and CO2 permeance reached to 37.7 GPU for PSf/TiO2 7 wt% at 7 bar pressure. It was detected that, critical nanoparticle aggregation has occurred at higher filler loadings (≥5 wt%), which contributed to formation of macrovoids and defects in MMMs. Accordingly, MMMs with higher gas permeance and lower gas selectivity were prepared in higher TiO2 contents (≥5 wt%). POLYM. ENG. SCI., 55:367–374, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
The implementation of high-performance membranes in large-scale CO2 capture has the potential to significantly decrease the capture cost and reduce the environmental footprints. However, highly permeable polymers rarely have sufficient selectivity for energy-efficient carbon capture. In this study, zeolite imidazolate framework hollow nanoparticles (ZIF-HNPs) were synthesized and embedded into highly permeable polymers as versatile fillers to prepare mixed matrix membranes (MMMs). The interior hollow architecture minimizes transport resistance of gas diffusion through the fillers while its molecular-sieving shell provides high selectivity. With 28 vol% loading of ZIF-HNPs, the membrane exhibits CO2 permeability of 7,128 Barrer and CO2/CH4 selectivity of 16.4 (57.7% and 31.4% higher than these of pristine membrane), which surpass the upper bound of the state-of-the-art reported polymeric membranes. Meanwhile, we proposed a modified Maxwell model based on the hierarchical structure of the MMM to analyze the effects of cavity size and loading on gas transport behaviors within membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号