首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A donor–acceptor (D–A) semiconducting copolymer, PDPP‐TVT‐29, comprising a diketopyrrolopyrrole (DPP) derivative with long, linear, space‐separated alkyl side‐chains and thiophene vinylene thiophene (TVT) for organic field‐effect transistors (OFETs) can form highly π‐conjugated structures with an edge‐on molecular orientation in an as‐spun film. In particular, the layer‐like conjugated film morphologies can be developed via short‐term thermal annealing above 150 °C for 10 min. The strong intermolecular interaction, originating from the fused DPP and D–A interaction, leads to the spontaneous self‐assembly of polymer chains within close proximity (with π‐overlap distance of 3.55 Å) and forms unexpectedly long‐range π‐conjugation, which is favorable for both intra‐ and intermolecular charge transport. Unlike intergranular nanorods in the as‐spun film, well‐conjugated layers in the 200 °C‐annealed film can yield more efficient charge‐transport pathways. The granular morphology of the as‐spun PDPP‐TVT‐29 film produces a field‐effect mobility (μ FET) of 1.39 cm2 V?1 s?1 in an OFET based on a polymer‐treated SiO2 dielectric, while the 27‐Å‐step layered morphology in the 200 °C‐annealed films shows high μ FET values of up to 3.7 cm2 V?1 s?1.  相似文献   

2.
Unipolar n‐type semiconducting polymers based on the benzobisthiadiazole (BBT) unit and its heteroatom‐substituted derivatives are for the first time synthesized by the D‐A1‐D‐A2 polymer‐backbone design strategy. Selenium (Se) substitution is a very effective molecular design, but it has been seldom studied in n‐type polymers. In this study, within the similar conjugated framework, the Se substitution effects on the optical, electrochemical, solid‐state polymer packing, electron mobility, and air‐stability of the target unipolar n‐type polymers are unraveled. Replacing the sulfur (S) atom in the thiadiazole heterocycles with the Se atom leads to narrower bandgaps and deeper lowest unoccupied molecular orbital (LUMO) levels of the n‐type polymers. Furthermore, the Se‐substituted polymer (pSeN‐NDI) shows shorter lamellar packing distances and stronger edge‐on π–π stacking interactions than its S‐counterpart (pSN‐NDI), as observed by the two‐dimensional grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) patterns. With the deeper LUMO level and thin‐film microstructures suitable for transistors, pSeN‐NDI exhibits four‐fold higher electron mobilities (μe) than pSN‐NDI. However, the other Se‐containing polymer, pSeS‐NDI, forms rather amorphous film structures, which is caused by its limited thermal stability and decomposition during the thermal annealing processes, thus giving rise to a lower μe than its S‐counterpart (pBBT‐NDI). Most importantly, pBBT‐NDI demonstrates an electron mobility of 0.039 cm2 V?1 s?1, which is noticeable among the unipolar n‐type polymers based on the BBT and its analogs.  相似文献   

3.
A series of isoindigo‐based conjugated polymers (PII2F‐CmSi, m = 3–11) with alkyl siloxane‐terminated side chains are prepared, in which the branching point is systematically “moved away” from the conjugated backbone by one carbon atom. To investigate the structure–property relationship, the polymer thin film is subsequently tested in top‐contact field‐effect transistors, and further characterized by both grazing incidence X‐ray diffraction and atomic force microscopy. Hole mobilities over 1 cm2 V?1 s?1 is exhibited for all soluble PII2F‐CmSi (m = 5–11) polymers, which is 10 times higher than the reference polymer with same polymer backbone. PII2F‐C9Si shows the highest mobility of 4.8 cm2 V?1 s?1, even though PII2F‐C11Si exhibits the smallest π–π stacking distance at 3.379 Å. In specific, when the branching point is at, or beyond, the third carbon atoms, the contribution to charge transport arising from π–π stacking distance shortening becomes less significant. Other factors, such as thin‐film microstructure, crystallinity, domain size, become more important in affecting the resulting device's charge transport.  相似文献   

4.
Herein, this study investigates the impact of branching‐point‐extended alkyl chains on the charge transport properties of three ultrahigh n‐type mobility conjugated polymers. Using grazing incidence wide‐angle X‐ray scattering, analysis of the crystallinity of the series shows that while π–π interactions are increased for all three polymers as expected, the impact of the side‐chain engineering on polymer backbone crystallinity is unique to each polymer and correlates to the observed changes in charge transport. With the three polymers exhibiting n‐type mobilities between 0.63 and 1.04 cm2 V?1 s?1, these results ratify that the indolonaphthyridine building block has an unprecedented intrinsic ability to furnish high‐performance n‐type organic semiconductors.  相似文献   

5.
The branching point of the side‐chain of naphthalenediimide (NDI)‐based conjugated polymers is systematically controlled by incorporating four different side‐chains, i.e., 2‐hexyloctyl (P(NDI1‐T)), 3‐hexylnonyl (P(NDI2‐T)), 4‐hexyldecyl (P(NDI3‐T)), and 5‐hexylundecyl (P(NDI4‐T)). When the branching point is located farther away from the conjugated backbones, steric hindrance around the backbone is relaxed and the intermolecular interactions between the polymer chains become stronger, which promotes the formation of crystalline structures in thin film state. In particular, thermally annealed films of P(NDI3‐T) and P(NDI4‐T), which have branching points far away from the backbone, possess more‐developed bimodal structure along both the face‐on and edge‐on orientations. Consequently, the field‐effect electron mobilities of P(NDIm‐T) polymers are monotonically increased from 0.03 cm2 V−1 s−1 in P(NDI1‐T) to 0.22 cm2 V−1 s−1 in P(NDI4‐T), accompanied by reduced activation energy and contact resistance of the thin films. In addition, when the series of P(NDIm‐T) polymers is applied in all‐polymer solar cells (all‐PSCs) as electron acceptor, remarkably high‐power conversion efficiency of 7.1% is achieved along with enhanced current density in P(NDI3‐T)‐based all‐PSCs, which is mainly attributed to red‐shifted light absorption and enhanced electron‐transporting ability.  相似文献   

6.
N‐type organic small molecules (SMs) are attracting attention in the organic electronics field, due to their easy purification procedures with high yield. However, only a few reports show SMs that perform well in both organic field‐effect transistors (OFETs) and organic solar cells (OSCs). Here, the synthesis and characterization of an n‐type small molecule with an indacenodithieno[3,2‐b]thiophene (IDTT) core unit and linear alkylated side chain (C16) (IDTTIC) are reported. Compared to the state‐of‐the‐art n‐type molecule IDTIC, IDTTIC exhibits smaller optical bandgap and higher absorption coefficient, which is due to the enhanced intramolecular effect. After mixing with the polymer donor PBDB‐T, IDTIC‐based solar cells deliver a power conversion efficiency of only 5.67%. In stark contrast, the OSC performance of IDTTIC improves significantly to 11.2%. It is found that the superior photovoltaic properties of PBDB‐T:IDTTIC blends are mainly due to reduced trap‐assisted recombination and enhanced molecular packing coherence length and higher domain purity when compared to IDTIC. Moreover, a significantly higher electron mobility of 0.50 cm2 V−1 s−1 for IDTTIC in OFET devices than for IDTIC (0.15 cm2 V−1 s−1) is obtained. These superior performances in OSCs and OFETs demonstrate that SMs with extended π‐conjugation of the backbone possess a great potential for application in organic electronic devices.  相似文献   

7.
High‐mobility semiconducting polymers composed of arylene vinylene and dithiophene‐thiadiazolobenzotriazole (SN) units are developed by three powerful design strategies, namely, backbone engineering, heteroatom substitution, and side‐chain engineering. First, starting from the quaterthiophene‐SN copolymer, a vinylene spacer is inserted into the quaterthiophene unit for constructing highly‐planar backbones. Second, heteroatoms (O and N atoms) are incorporated into the thienylene vinylene moieties to tune the electronic properties and intermolecular interactions. Third, the alkyl side chains are optimized to tune the solubility and self‐assembly properties. As a consequence, a remarkable thin film transistor performance is obtained. The very high hole mobility of 3.22 cm2 V?1 s?1 is achieved for the p‐type polymer, PSNVT‐DTC8, which is the highest value ever reported for the polymers based on the benzobisthiadiazole and its analogs. Moreover, heteroatom substitution efficiently varies the charge polarity of the polymers as in the case of the N atom substituted PSNVTz‐DTC16 displaying n‐type dominant ambipolar properties with the electron mobility of 0.16 cm2 V?1 s?1. Further studies using grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy have revealed the high crystallinities of the polymer thin films with strong π–π interactions and suitable polymer packing orientations.  相似文献   

8.
Temperature‐dependent (80–350 K) charge transport in polymer semiconductor thin films is studied in parallel with in situ X‐ray structural characterization at equivalent temperatures. The study is conducted on a pair of isoindigo‐based polymers containing the same π‐conjugated backbone with different side chains: one with siloxane‐terminated side chains (PII2T‐Si) and the other with branched alkyl‐terminated side chains (PII2T‐Ref). The different chemical moiety in the side chain results in a completely different film morphology. PII2T‐Si films show domains of both edge‐on and face‐on orientations (bimodal orientation) while PII2T‐Ref films show domains of edge‐on orientation (unimodal orientation). Electrical transport properties of this pair of polymers are also distinctive, especially at high temperatures (>230 K). Smaller activation energy (E A) and larger pre‐exponential factor (μ 0) in the mobility‐temperature Arrhenius relation are obtained for PII2T‐Si films when compared to those for PII2T‐Ref films. The results indicate that the more effective transport pathway is formed for PII2T‐Si films than for the other, despite the bimodally oriented film structure. The closer π–π packing distance, the longer coherence length of the molecular ordering, and the smaller disorder of the transport energy states for PII2T‐Si films altogether support the conduction to occur more effectively through a system with both edge‐on and face on orientations of the conjugated molecules. Reminding the 3D nature of conduction in polymer semiconductor, our results suggest that the engineering rules for advanced polymer semiconductors should not simply focus on obtaining films with conjugated backbone in edge‐on orientation only. Instead, the engineering should also encounter the contribution of the inevitable off‐directional transport process to attain effective transport from polymer thin films.  相似文献   

9.
π‐conjugated polymers based on the electron‐neutral alkoxy‐functionalized thienyl‐vinylene (TVTOEt) building‐block co‐polymerized, with either BDT (benzodithiophene) or T2 (dithiophene) donor blocks, or NDI (naphthalenediimide) as an acceptor block, are synthesized and characterized. The effect of BDT and NDI substituents (alkyl vs alkoxy or linear vs branched) on the polymer performance in organic thin film transistors (OTFTs) and all‐polymer organic photovoltaic (OPV) cells is reported. Co‐monomer selection and backbone functionalization substantially modifies the polymer MO energies, thin film morphology, and charge transport properties, as indicated by electrochemistry, optical spectroscopy, X‐ray diffraction, AFM, DFT calculations, and TFT response. When polymer P7 is used as an OPV acceptor with PTB7 as a donor, the corresponding blend yields TFTs with ambipolar mobilities of μe = 5.1 × 10?3 cm2 V–1 s–1 and μh = 3.9 × 10?3 cm2 V–1 s–1 in ambient, among the highest mobilities reported to date for all‐polymer bulk heterojunction TFTs, and all‐polymer solar cells with a power conversion efficiency (PCE) of 1.70%, the highest reported PCE to date for an NDI‐polymer acceptor system. The stable transport characteristics in ambient and promising solar cell performance make NDI‐type materials promising acceptors for all‐polymer solar cell applications.  相似文献   

10.
Considering there is growing interest in the superior charge transport in the (E)‐2‐(2‐(thiophen‐2‐yl)‐vinyl)thiophene (TVT)‐based polymer family, an essential step forward is to provide a deep and comprehensive understanding of the structure–property relationships with their polymer analogs. Herein, a carefully chosen set of DPP‐TVT‐n polymers are reported here, involving TVT and diketopyrrolopyrrole (DPP) units that are constructed in combination with varying thiophene content in the repeat units, where n is the number of thiophene spacer units. Their OFET characteristics demonstrate ambipolar behavior; in particular, with DPP‐TVT‐0 a nearly balanced hole and electron transport are observed. Interestingly, the majority of the charge‐transport properties changed from ambipolar to p‐type dominant, together with the enhanced hole mobilities, as the electron‐donating thiophene spacers are introduced. Although both the lamellar d‐spacings and π‐stacking distances of DPP‐TVT‐n decreased with as the number of thiophene spacers increased, DPP‐TVT‐1 clearly shows the highest hole mobility (up to 2.96 cm2 V?1 s?1) owing to the unique structural conformations derived from its smaller paracrystalline distortion parameter and narrower plane distribution relative to the others. These in‐depth studies should uncover the underlying structure–property relationships in a relevant class of TVT‐like semiconductors, shedding light on the future design of top‐performing semiconducting polymers.  相似文献   

11.
This study investigates the effect of the molecular structure of three different donor units, naphthalene (Np), bithiophene (BT), and thiophene–vinylene–thiophene (TVT), in isoindigo (IIG)‐based donor –acceptor conjugated polymers (PIIG‐Np, PIIG‐BT and PIIG‐TVT) on the charge carrier mobility of organic field‐effect transistors (OFETs). The charge transport properties of three different IIG‐based polymers strongly depend on donor units. PIIG–BT OFETs showed 50 times higher hole mobility (0.63 cm2 V?1 s?1) than PIIG–TVT and PIIG–Np ones of ≈ 0.01 cm2 V?1 s?1 with CYTOP dielectric though the BT units have less planarity than the TVT and Np units. The reasons for the different mobility in IIG‐based polymers are studied by analyzing the energy structure by absorption spectra, calculating transport levels by density functional theory, investigating the in‐ and out‐of‐plane crystallinity of thin film by grazing‐incidence wide‐angle X‐ray scattering, and extracting key transport parameters via low‐temperature measurements. By combining theoretical, optical, electrical, and structural analyses, this study finds that the large difference in OFET mobility mainly originates from the transport disorders determined by the different microcrystal structure, rather than the intrinsic transport properties in isolated chains for different polymers.  相似文献   

12.
By changing the packing motif of the conjugated cores and the thin‐film microstructures, unipolar organic semiconductors may be converted into ambipolar materials. A combined experimental and theoretical investigation is conducted on the thin‐film organic field‐effect transistors (OFETs) of three organic semiconductors that have the same conjugated core structure of s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione but with different n‐alkyl groups. The optical and electrochemical measurements suggest that the three organic semiconductors have very similar energy levels; however, their OFETs exhibit dramatically different transport characteristics. Transistors based on compound 1a or 1c show ambipolar transport properties, while those based on compound 1b show p‐type unipolar behavior. Specifically, compound 1c is characterized as a good ambipolar semiconductor with the highest electron mobility of 0.22 cm2 V?1 s?1 and the highest hole mobility of 0.03 cm2 V?1 s?1. Complementary metal oxide semiconductor (CMOS) inverters incorporated with compound 1c show sharp inversions with high gains above 50. Theoretical investigations reveal that the drastic difference in the transport properties of the three materials is due to the difference in their molecular packing and film microstructures.  相似文献   

13.
Recently, polymer field‐effect transistors have gone through rapid development. Nevertheless, charge transport mechanism and structure‐property relationship are less understood. Here we use strong electron‐deficient benzodifurandione‐based poly(p‐phenylene vinylene) ( BDPPV ) as polymer backbone and develop six BDPPV ‐based polymers ( BDPPV‐C1 to C6 ) with various side‐chain branching positions to systematically study the side‐chain effect on device performance. All the polymers exhibited ambient‐stable n‐type transporting behaviors with the highest electron mobility of up to 1.40 cm2 V?1 s?1. The film morphologies and microstructures of all the six polymers were systematically investigated. Our results demonstrate that the interchain π–π stacking distance decreases as moving the branching position away from polymer backbones, and an unprecedentedly close π–π stacking distance down to 3.38 Å is obtained for BDPPV‐C4 to C6 . Nonetheless, closer π–π stacking distance does not always correlate with higher electron mobility. Polymer crystallinity, thin film disorder, and polymer packing conformation, which all influenced by side‐chain branching position, are proved to show significant influence on device performance. Our study not only reveals that π–π stacking distance is not the decisive factor on carrier mobility in conjugated polymers but also demonstrates that side‐chain branching position engineering is a powerful strategy to modulate and balance these factors in conjugated polymers.  相似文献   

14.
Based on the integrated consideration and engineering of both conjugated backbones and flexible side chains, solution‐processable polymeric semiconductors consisting of a diketopyrrolopyrrole (DPP) backbone and a finely modulated branching side chain (ε‐branched chain) are reported. The subtle change in the branching point from the backbone alters the π?π stacking and the lamellar distances between polymer backbones, which has a significant influence on the charge‐transport properties and in turn the performances of field‐effect transistors (FETs). In addition to their excellent electron mobilities (up to 2.25 cm2 V?1 s?1), ultra‐high hole mobilities (up to 12.25 cm2 V?1 s?1) with an on/off ratio (Ion/Ioff) of at least 106 are achieved in the FETs fabricated using the polymers. The developed polymers exhibit extraordinarily high electrical performance with both hole and electron mobilities superior to that of unipolar amorphous silicon.  相似文献   

15.
Two angular‐shaped 4,9‐didodecyl α‐aNDT and 4,9‐didodecyl β‐aNDT isomeric structures have been regiospecifically designed and synthesized. The distannylated α‐aNDT and β‐aNDT monomers are copolymerized with the Br‐DTNT monomer by the Stille coupling to furnish two isomeric copolymers, PαNDTDTNT and PβNDTDTNT, respectively. The geometric shape and coplanarity of the isomeric α‐aNDT and β‐aNDT segments in the polymers play a decisive role in determining their macroscopic device performance. Theoretical calculations show that PαNDTDTNT possesses more linear polymeric backbone and higher coplanarity than PβNDTDTNT. The less curved conjugated main chain facilitates stronger intermolecular π–π interactions, resulting in more redshifted absorption spectra of PαNDTDTNT in both solution and thin film compared to the PβNDTDTNT counterpart. 2D wide‐angle X‐ray diffraction analysis reveals that PαNDTDTNT has more ordered π‐stacking and lamellar stacking than PβNDTDTNT as a result of the lesser curvature of the PαNDTDTNT backbone. Consistently, PαNDTDTNT exhibits a greater field effect transistor hole mobility of 0.214 cm2 V?1 s?1 than PβNDTDTNT with a mobility of 0.038 cm2 V?1 s?1. More significantly, the solar cell device incorporating the PαNDTDTNT:PC71BM blend delivers a superior power conversion efficiency (PCE) of 8.01% that outperforms the PβNDTDTNT:PC71BM‐based device with a moderate PCE of 3.6%.  相似文献   

16.
Optimization and analysis of conjugated polymer side chains for high‐performance organic photovoltaic cells (OPVs) reveal a critical relationship between the chemical structure of the side chains and photovoltaic properties of polymer‐based bulk heterojunction OPVs. In particular, the impact of the alkyl side chain length on the π‐bridging (thienothiophene, TT) unit is considered by designing and synthesizing a series of benzodithiophene derivatives (BDT(T)) and thieno[3,2‐b]thiophene‐π‐bridged thieno[3,4‐c]pyrrole‐4,6(5H)‐dione (ttTPD) alternating copolymers, PBDT(T)‐(R2)ttTPD, with alkyl chains of varying length on the TT unit. Using a combination of 2D X‐ray diffraction, Raman spectroscopy, and electrical device characterization, it is elucidated in detail how these subtle changes to the chemical structure affect the molecular conformation, thin film molecular packing, blend film morphology, optoelectronic properties, and hence overall photovoltaic performance. For copolymers employing both the alkoxy or alkylthienyl‐substituted BDT motifs, it is found that octyl side chains on TT unit yield the maximum degree of molecular backbone coplanarity and result in the highest quality of molecular packing and optimized hole mobility. Inverted devices fabricated using this PBDTT‐8ttTPD: polymer/[6,6]‐phenyl‐C71‐butylic acid methyl ester active layer show a maximum power conversion efficiency (PCE) of 8.7% with large area cells (0.64 cm2) maintaining a PCE of 7.5%.  相似文献   

17.
Thermoelectric generators pose a promising approach in renewable energies as they can convert waste heat into electricity. In order to build high efficiency devices, suitable thermoelectric materials, both n‐ and p‐type, are needed. Here, the n‐type high‐mobility polymer poly[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (P(NDI2OD‐T2)) is focused upon. Via solution doping with 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)‐N,N‐diphenylaniline (N‐DPBI), a maximum power factor of (1.84 ± 0.13) µW K?2 m?1 is achieved in an in‐plane geometry for 5 wt% dopant concentration. Additionally, UV–vis spectroscopy and grazing‐incidence wide‐angle X‐ray scattering are applied to elucidate the mechanisms of the doping process and to explain the discrepancy in thermoelectric performance depending on the charge carriers being either transported in‐plane or cross‐plane. Morphological changes are found such that the crystallites, built‐up by extended polymer chains interacting via lamellar and π–π stacking, re‐arrange from face‐ to edge‐on orientation upon doping. At high doping concentrations, dopant molecules disturb the crystallinity of the polymer, hindering charge transport and leading to a decreased power factor at high dopant concentrations. These observations explain why an intermediate doping concentration of N‐DPBI leads to an optimized thermoelectric performance of P(NDI2OD‐T2) in an in‐plane geometry as compared to the cross‐plane case.  相似文献   

18.
A series of dialkylated dithienothiophenoquinoids ( DTTQ s), end‐functionalized with dicyanomethylene units and substituted with different alkyl chains, are synthesized and characterized. Facile one‐pot synthesis of the dialkylated DTT core is achieved, which enables the efficient realization of DTTQ s as n‐type active semiconductors for solution‐processable organic field effect transistors (OFETs). The molecular structure of hexyl substituted DTTQ‐6 is determined via single‐crystal X‐ray diffraction, revealing DTTQ is a very planar core. The DTTQ cores form a “zig‐zag” linking layer and the layers stack in a “face‐to‐face” arrangement. The very planar core structure, short core stacking distance (3.30 Å), short intermolecular S? N distance (2.84 Å), and very low lying lowest unoccupied molecular orbital energy level of ?4.2 eV suggest that DTTQ s should be excellent electron transport candidates. The physical and electrochemical properties as well as OFETs performance and thin film morphologies of these new DTTQ s are systematically studied. Using a solution‐shearing method, DTTQ‐11 exhibits n‐channel transport with the highest mobility of up to 0.45 cm2 V?1 s?1 and a current ON/OFF ratio (I ON/I OFF) greater than 105. As such, DTTQ‐11 has the highest electron mobility of any DTT‐based small molecule semiconductors yet discovered combined with excellent ambient stability. Within this family, carrier mobility magnitudes are correlated with the alkyl chain length of the side chain substituents of DTTQ s.  相似文献   

19.
Despite extensive progress in organic field‐effect transistors, there are still far fewer reliable, high‐mobility n‐type polymers than p‐type polymers. It is demonstrated that by using dopants at a critical doping molar ratio (MR), performance of n‐type polymer poly[[N,N9‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,59‐(2,29‐bithiophene)] (P(NDI2DO‐T2)) field‐effect transistors (FETs) can be significantly improved and simultaneously optimized in mobility, on–off ratio, crystallinity, injection, and reliability. In particular, when using the organic dopant bis(cyclopentadienyl)–cobalt(II) (cobaltocene, CoCp2) at a low concentration (0.05 wt%), the FET mobility is increased from 0.34 to 0.72 cm2 V–1 s–1, and the threshold voltage was decreased from 32.7 to 8.8 V. The relationship between the MR of dopants and electrical characteristics as well as the evolution in polymer crystallinity revealed by synchrotron X‐ray diffractions are systematically investigated. Deviating from previous discoveries, it is found that mobility increases first and then decreases drastically beyond a critical value of MR. Meanwhile, the intensity and width of the main peak of in‐plane X‐ray diffraction start to decrease at the same critical MR. Thus, the mobility decrease is correlated with the disturbed in‐plane crystallinity of the conjugated polymer, for both organic and inorganic dopants. The method provides a simple and efficient approach to employing dopants to optimize the electrical performance and microstructure of P(NDI2DO‐T2).  相似文献   

20.
The influence of the interface of the dielectric SiO2 on the performance of bottom‐contact, bottom‐gate poly(3‐alkylthiophene) (P3AT) field‐effect transistors (FETs) is investigated. In particular, the operation of transistors where the active polythiophene layer is directly spin‐coated from chlorobenzene (CB) onto the bare SiO2 dielectric is compared to those where the active layer is first spin‐coated then laminated via a wet transfer process such that the film/air interface of this film contacts the SiO2 surface. While an apparent alkyl side‐chain length dependent mobility is observed for films directly spin‐coated onto the SiO2 dielectric (with mobilities of ≈10?3 cm2 V?1 s?1 or less) for laminated films mobilities of 0.14 ± 0.03 cm2 V?1 s?1 independent of alkyl chain length are recorded. Surface‐sensitive near edge X‐ray absorption fine structure (NEXAFS) spectroscopy measurements indicate a strong out‐of‐plane orientation of the polymer backbone at the original air/film interface while much lower average tilt angles of the polymer backbone are observed at the SiO2/film interface. A comparison with NEXAFS on crystalline P3AT nanofibers, as well as molecular mechanics and electronic structure calculations on ideal P3AT crystals suggest a close to crystalline polymer organization at the P3AT/air interface of films from CB. These results emphasize the negative influence of wrongly oriented polymer on charge carrier mobility and highlight the potential of the polymer/air interface in achieving excellent “out‐of‐plane” orientation and high FET mobilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号