首页 | 官方网站   微博 | 高级检索  
     


Symmetry properties of chemical graphs VIII. On complementarity of isomerization modes
Authors:Milan Randić
Affiliation:(1) Department of Mathematics and Computer Science, Drake University, 50311 Des Moines, IA;(2) Ames Laboratory, Iowa State University, 50011 Ames, IA, USA
Abstract:Isomerization mode defines the process of interconversion of one isomer into another. Several mechanisms are conceivable for degenerate rearrangements and, in general, lead to a distinctive network of relations between participating isomers. Here we consider selected modes which are complementary in the sense that if mode 1 transforms an isomer A into B, C, D etc., then mode 2 transforms the same isomer A into X, Y, Z, etc., which includes all isomers not comprised by the first mode. Physico-chemical complementarity can be translated into mathematical complementarity of associated chemical graphs. This allows us to use the tool of Graph Theory. One example of graph theoretical use is the theorem that graph G and its complement G have the same automorphism group (i.e., the same symmetry). We have shown that a close examination of a graph and its complement and their components allows us to recognize the automorphism group in some complex cases without resorting to canonical numbering or other involved procedures, and even allows us to determine isomorphism of different processes.Dedicated to Professor Kurt Mislow of Princeton UniversityOperated for the U.S. Department of Energy by Iowa State University under contract W-7405-Eng-82. Supported in part by the Office of the Director.
Keywords:Graph theory  chemical graphs  degenerate rearrangements  isomerization of octahedral XY 6 complexes  isomerization of tetragonal-pyramidal XY 4 complexes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号