首页 | 官方网站   微博 | 高级检索  
     

颜色可调Sr3Y(BO33∶Tm3+,Dy3+荧光粉的发光性能及能量传递
引用本文:郑金乐,武秀兰,任强,海鸥,任宇涵,赵宇靖,尹博杰,杨恩龙.颜色可调Sr3Y(BO33∶Tm3+,Dy3+荧光粉的发光性能及能量传递[J].无机化学学报,2019,35(12):2226-2232.
作者姓名:郑金乐  武秀兰  任强  海鸥  任宇涵  赵宇靖  尹博杰  杨恩龙
作者单位:陕西科技大学材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021,陕西科技大学材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021,陕西科技大学材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021,陕西科技大学材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021,陕西科技大学材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021,陕西科技大学材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021,陕西科技大学材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021,陕西科技大学材料科学与工程学院, 陕西省无机材料绿色制备与功能化重点实验室, 西安 710021
基金项目:陕西省教育厅科研项目基金(No.18JK0115)和陕西省重点研发计划基金(No.2016TTC-G-4-4,2017TSCXL-GY-07-02)资助项目。
摘    要:采用高温固相法制备了Sr_3Y(BO_3)_3:xTm~(3+),yDy~(3+)荧光粉,并通过XRD、SEM和荧光光谱仪对样品的物相、微观形貌、发光性能、能量传递机制和CIE色坐标进行了分析。结果表明:Sr_3Y(BO_3)_3:xTm~(3+)荧光粉在监测波长为359 nm时发射蓝光,Tm~(3+)的浓度淬灭点为x=0.08;在Sr_3Y(BO_3)_3:0.08Tm~(3+),yDy~(3+)荧光粉中,随着Dy~(3+)掺杂浓度的增加,Tm~(3+)的发光强度降低而Dy~(3+)发光强度却先增加后降低,Dy~(3+)的浓度淬灭点为y=0.1;通过改变Dy~(3+)掺杂浓度或改变激发光的波长,均可实现发射光的颜色可调;在Tm~(3+)-Dy~(3+)离子之间存在能量传递。当Dy~(3+)掺杂浓度(物质的量分数)为0.15时能量传递效率达75.14%,能量传递机制为电偶极-电偶极相互作用。

关 键 词:高温固相法  Sr3Y(BO33xTm3+yDy3+  荧光光谱  颜色可调  能量传递
收稿时间:2019/5/7 0:00:00
修稿时间:2019/10/15 0:00:00

Luminescent Properities and Energy Transfer of Color Tunable Sr3Y(BO3)3: Tm3+,Dy3+ Phosphors
ZHENG Jin-Le,WU Xiu-Lan,REN Qiang,HAI Ou,REN Yu-Han,ZHAO Yu-Jing,YIN Bo-Jie and YANG En-Long.Luminescent Properities and Energy Transfer of Color Tunable Sr3Y(BO3)3: Tm3+,Dy3+ Phosphors[J].Chinese Journal of Inorganic Chemistry,2019,35(12):2226-2232.
Authors:ZHENG Jin-Le  WU Xiu-Lan  REN Qiang  HAI Ou  REN Yu-Han  ZHAO Yu-Jing  YIN Bo-Jie and YANG En-Long
Affiliation:School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi''an 710021, China,School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi''an 710021, China,School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi''an 710021, China,School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi''an 710021, China,School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi''an 710021, China,School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi''an 710021, China,School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi''an 710021, China and School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi''an 710021, China
Abstract:Sr3Y(BO3)3:xTm3+,yDy3+ phosphors were prepared by high-temperature solid phase reaction. The phase structure, micromorphology, luminescence properties, energy transfer and CIE coordinates of the samples were investigated by XRD diffraction, SEM and fluorescence spectrophotometer. All results indicated that Sr3Y(BO3)3:xTm3+ phosphors emitted blue light under the excitation of 359 nm UV light and the Tm3+ concentration quenching point was x=0.08(n/n). In Sr3Y(BO3)3:0.08Tm3+,yDy3+ phosphors, with the Dy3+ doping concentration increasing, the Tm3+ luminescence intensity decreased; meanwhile, the Dy3+ luminescence intensity firstly increased and then decreased, and the critical quenching concentration of Dy3+ was y=0.1(n/n). The emitting color could be tuned by changing the doped Dy3+ concertration or the excitation wavelength. There is energy transfer between Tm3+-Dy3+ in the phosphors. When the doping concentration was y=0.15, the energy transfer efficiency was as high as 75.14%, and the energy transfer mechanism is electric dipole-dipole interaction.
Keywords:high-temperature solid phase method  Sr3Y(BO3)3:xTm3+  yDy3+  fluorescence spectrum  color tunable  energy transfer
本文献已被 CNKI 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号