首页 | 官方网站   微博 | 高级检索  
     

热致和磁致形状记忆合金循环变形和疲劳行为研究
引用本文:康国政,阚前华,于超,宋迪.热致和磁致形状记忆合金循环变形和疲劳行为研究[J].力学进展,2018,48(1):1802.
作者姓名:康国政  阚前华  于超  宋迪
作者单位:1 西南交通大学牵引动力国家重点实验室, 成都 610031
基金项目:致谢:国家自然科学基金重点项目资助(NSFC11532010)
摘    要:形状记忆合金(包括热致和磁致形状记忆合金)由于其特有的超弹性和形状记忆效应, 一直以来受到学者和工程界人士广泛关注, 且已有诸多成功的工程应用案例.为了进一步拓展该类合金的工程应用范围, 对其热--力和磁--力耦合循环变形和疲劳失效行为的宏微观实验观察和理论模型研究成果进行了综述. 总结了NiTi和NiTiX两类合金材料的温度诱发(即热致)的热--力耦合循环变形和疲劳失效行为研究的最新成果; 对以NiMnGa合金为代表的磁场诱发(即磁致)的磁--力耦合循环变形和疲劳失效行为的研究现状进行了评述; 提出并预测了未来的研究方向及发展趋势. 

关 键 词:形状记忆合金    循环变形    疲劳    宏微观层次    实验研究    理论模型
收稿时间:2017-04-07

Study on cyclic deformation and fatigue of thermal and magnetic shape memory alloys
Affiliation:1 State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China2 Sichuan Provincial Key Laboratory of Applied Mechanics and Structure Safety, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China3 School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract:Shape memory alloys (SMAs), including the thermal and magnetic ones, have attracted wide attention from scholars and engineers, and have been successfully employed in many engineering applications due to their unique super-elasticity and shape memory effects. To further prompt the application fields of SMAs, the progresses in the microscopic and macroscopic experimental observations and theoretical studies on their thermo-mechanical and magneto-mechanical coupled cyclic deformation and fatigue failure are reviewed herein. The latest achievements on the thermo-mechanical coupled cyclic deformation and fatigue failure of the thermal (i.e., temperature-induced) SMAs including NiTi and high-temperature NiTiX ones are summarized. In addition, the research status on the magneto-mechanical coupled cyclic deformation and fatigue failure of the magnetic SMAs including NiMnGa ones are reviewed. Last, a brief summary and a prospect of future topics are provided. 
Keywords:
点击此处可从《力学进展》浏览原始摘要信息
点击此处可从《力学进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号