首页 | 官方网站   微博 | 高级检索  
     


Composition operators on the Lipschitz space in polydiscs
Authors:Zehua?Zhou  author-information"  >  author-information__contact u-icon-before"  >  mailto:zehuazhou@hotmail.com"   title="  zehuazhou@hotmail.com"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:Department of Mathematics, Tianjin University, Tianjin 300072, China; LiuHui Center for Applied Mathematics, Nankai University and Tianjin University, Tianjin 300072, China
Abstract:Let Un be the unit polydisc of Cn and φ = (φ 1,...,φ n ) a holomorphic self-map of Un. Let 0 ≤α 1. This paper shows that the composition operator C is bounded on the Lipschitz space Lip(Un) if and only if there exists M > 0 such that

$$sumlimits_{k,l = 1}^n {left| {frac{{partial phi _l }}{{partial zk}}(z)} right|left( {frac{{1 - left| {z_k } right|^2 }}{{1 - left| {phi _l (z)} right|^2 }}} right)^{1 - alpha } }  leqslant M$$
for z ∈ Un. Moreover Cφ is compact on Lipα(Un) if and only if Cφ is bounded on Lipα(Un) and for every ε>0, there exists a δ > 0 such that

$$sumlimits_{k,l = 1}^n {left| {frac{{partial phi _l }}{{partial zk}}(z)} right|left( {frac{{1 - left| {z_k } right|^2 }}{{1 - left| {phi _l (z)} right|^2 }}} right)^{1 - alpha } }  leqslant varepsilon $$
whenever dist((z),∂Un).
Keywords:Lipschitz space   polydisc   composition operator.
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号