首页 | 官方网站   微博 | 高级检索  
     


Room-temperature ferromagnetism in (K0.5Na0.5)NbO3-xBaNi0.5Nb0.5O3-δ ferroelectric ceramics with narrow bandgap
Authors:Chao Zhang  Dongliang Zheng  Jin Hong  Pingxiong Yang  Jiahua Tao  Junhao Chu
Abstract:In this paper, a simple, reproducible and cost-effective solid-state reaction sintering process is developed to fabricate (K0.5Na0.5)NbO3-xBaNi0.5Nb0.5O3-δ (KNN-xBNN) ceramics with a narrow bandgap and room-temperature ferromagnetism. Here, we report a systematic investigation of the influence of the BaNi0.5Nb0.5O3-δ (BNN) concentration on the properties of KNN-xBNN ceramics. All ceramics form orthorhombic perovskite structures with a space group Amm2 and a weak peak at the wavelength of 550 cm?1 that is characteristic of the pillow shoulder of the orthorhombic phase. KNN-xBNN ceramics with x between 0.02 and 0.08 have a narrow bandgap of about 2.5 eV—much smaller than the 3.5 eV of its parent (K0.5Na0.5)NbO3 (KNN) ceramic—which is attributed to Ni2+-oxygen vacancy combinations (Ni2+-VO) raising the valence electron energy level of the KNN ceramic. Furthermore, doping BNN into KNN ceramics can significantly convert the magnetism from diamagnetism to ferromagnetism and the component of x = 0.08 achieves both maximum saturation magnetisation intensity (14 memu/g) and minimum coercive magnetic field (80 Oe). Our findings provide a systematic insight into the bandgap tunability and ferromagnetism induction at room temperature in lead-free perovskite KNN-xBNN ceramics, as well as demonstrate their potential applications in perovskite solar cells and multiferroic devices.
Keywords:Narrow bandgap  Ferroelectricity  Ferromagnetism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号