首页 | 官方网站   微博 | 高级检索  
     


Using augmented Lagrangian particle swarm optimization for constrained problems in engineering">Using augmented Lagrangian particle swarm optimization for constrained problems in engineering
Authors:Kai Sedlaczek  Peter Eberhard
Affiliation:(1) Institute of Engineering and Computational Mechanics, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
Abstract:The comparatively new stochastic method of particle swarm optimization (PSO) has been applied to engineering problems especially of nonlinear, non-differentiable, or non-convex type. Its robustness and its simple applicability without the need for cumbersome derivative calculations make PSO an attractive optimization method. However, engineering optimization tasks often consist of problem immanent equality and inequality constraints which are usually included by inadequate penalty functions when using stochastic algorithms. The simple structure of basic particle swarm optimization characterized by only a few lines of computer code allows an efficient implementation of a more sophisticated treatment of such constraints. In this paper, we present an approach which utilizes the simple structure of the basic PSO technique and combines it with an extended non-stationary penalty function approach, called augmented Lagrange multiplier method, for constraint handling where ill conditioning is a far less harmful problem and the correct solution can be obtained even for finite penalty factors. We describe the basic PSO algorithm and the resulting method for constrained problems as well as the results from benchmark tests. An example of a stiffness optimization of an industrial hexapod robot with parallel kinematics concludes this paper and shows the applicability of the proposed augmented Lagrange particle swarm optimization to engineering problems.
Keywords:Particle swarm optimization  Nonlinear constraints  Augmented lagrange multiplier method  Parallel kinematics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号