首页 | 官方网站   微博 | 高级检索  
     


Correction to: 3D SASHA myocardial T1 mapping with high accuracy and improved precision
Authors:Nordio  Giovanna  Bustin  Aurélien  Henningsson  Markus  Rashid  Imran  Chiribiri  Amedeo  Ismail  Tevfik  Odille  Freddy  Prieto  Claudia  Botnar  René Michael
Affiliation:1.School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH, UK
;2.Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
;3.Imagerie Adaptive Diagnostique et Interventionnelle, INSERM et Université de Lorraine, Nancy, France
;4.CIC-IT 1433, INSERM, Université de Lorraine, CHRU de Nancy, Nancy, France
;
Abstract:Purpose

To improve the precision of a free-breathing 3D saturation-recovery-based myocardial T1 mapping sequence using a post-processing 3D denoising technique.

Methods

A T1 phantom and 15 healthy subjects were scanned on a 1.5?T MRI scanner using 3D saturation-recovery single-shot acquisition (SASHA) for myocardial T1 mapping. A 3D denoising technique was applied to the native T1-weighted images before pixel-wise T1 fitting. The denoising technique imposes edge-preserving regularity and exploits the co-occurrence of 3D spatial gradients in the native T1-weighted images by incorporating a multi-contrast Beltrami regularization. Additionally, 2D modified Look-Locker inversion recovery (MOLLI) acquisitions were performed for comparison purposes. Accuracy and precision were measured in the myocardial septum of 2D MOLLI and 3D SASHA T1 maps and then compared. Furthermore, the accuracy and precision of the proposed approach were evaluated in a standardized phantom in comparison to an inversion-recovery spin-echo sequence (IRSE).

Results

For the phantom study, Bland–Altman plots showed good agreement in terms of accuracy between IRSE and 3D SASHA, both on non-denoised and denoised T1 maps (mean difference ?1.4?±?18.9 ms and ?4.4?±?21.2 ms, respectively), while 2D MOLLI generally underestimated the T1 values (69.4?±?48.4 ms). For the in vivo study, there was a statistical difference between the precision measured on 2D MOLLI and on non-denoised 3D SASHA T1 maps (P?=?0.005), while there was no statistical difference after denoising (P?=?0.95).

Conclusion

The precision of 3D SASHA myocardial T1 mapping was substantially improved using a 3D Beltrami regularization based denoising technique and was similar to that of 2D MOLLI T1 mapping, while preserving the higher accuracy and whole-heart coverage of 3D SASHA.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号