首页 | 官方网站   微博 | 高级检索  
     

高压均质对芒果汁中大肠杆菌的杀菌动力学
引用本文:关云静,周林燕,毕金峰,易建勇,吴昕烨,周 沫,李淑荣. 高压均质对芒果汁中大肠杆菌的杀菌动力学[J]. 食品科学, 2017, 38(10): 222-228. DOI: 10.7506/spkx1002-6630-201710037
作者姓名:关云静  周林燕  毕金峰  易建勇  吴昕烨  周 沫  李淑荣
作者单位:1.中国农业科学院农产品加工研究所,农业部农产品加工重点实验室,北京 100193;2.北京农业职业学院食品与生物工程系,北京 102442
基金项目:国家自然科学基金青年科学基金项目(31301529)
摘    要:为预测高压均质(high pressure homogenization,HPH)对芒果汁中大肠杆菌的杀菌作用,进行了压力40~190 MPa、进料温度20~60℃和均质次数1~5次的HPH实验,并运用Weibull模型对杀菌致死曲线进行动力学分析。研究表明:随压力、进料温度和均质次数的升高,HPH对芒果汁中大肠杆菌的杀菌效果增强。50℃HPH处理芒果汁,压力由40 MPa升高至190 MPa时,大肠杆菌降低量由0.46(lg(CFU/mL))增加至5.16(lg(CFU/mL)),达到美国食品药物管理局规定的非热加工杀菌卫生安全要求;70 MPa HPH处理芒果汁,进料温度由20℃升高至60℃时,大肠杆菌降低量由0.34(lg(CFU/mL))增加至5.02(lg(CFU/mL));20℃、190 MPa HPH处理芒果汁,均质次数由1增加至4时,大肠杆菌降低量由1.73(lg(CFU/mL))增加至5.15(lg(CFU/mL))。通过Weibull模型拟合杀菌致死曲线,并对模型进行简化,发现简化的Weib ull模型在20~50℃、40~190 MPa均质1次和20~40℃、190 MPa均质1~5次时拟合性较好(R~20.92)。简化的Weibull模型可用于预测进料温度-压力和进料温度-均质次数的杀菌效果,可为芒果汁的HPH生产过程中微生物安全性的控制提供理论依据。

关 键 词:芒果汁  进料温度  均质次数  压力  大肠杆菌  Weibull模型  

Inactivation Kinetics of Escherichia coli in Mango Juice by High Pressure Homogenization
GUAN Yunjing,ZHOU Linyan,BI Jinfeng,YI Jianyong,WU Xinye,ZHOU Mo,LI Shurong. Inactivation Kinetics of Escherichia coli in Mango Juice by High Pressure Homogenization[J]. Food Science, 2017, 38(10): 222-228. DOI: 10.7506/spkx1002-6630-201710037
Authors:GUAN Yunjing  ZHOU Linyan  BI Jinfeng  YI Jianyong  WU Xinye  ZHOU Mo  LI Shurong
Affiliation:1. Institute of Food Science and Technology, Key Laboratory of Agro-Products Processing, Ministry of Agriculture,Chinese Academy of Agricultural Sciences, Beijing 100193, China;2. Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
Abstract:The inactivation kinetics of Escherichia coli in mango juice by high pressure homogenization (HPH) wasfitted with the Weibull model to predict the inactivation effect in this study. E. coli was subjected to HPH treatments (inlettemperature: 20–60 ℃; pressure: 40–190 MPa, and passes: 1–5). The reduction in E. coli was enhanced with increasingpressure, inlet temperature or number of passes. The reduction in E. coli in the sample after one pass at 50 ℃ was enhancedfrom 0.46 to 5.16 (lg(CFU/mL)) with pressure increasing from 40 to 190 MPa, which reached the hygienic requirementsfor non-thermally processed food claimed by the US food and drug administration. The reduction in E. coli after one passat 70 MPa was enhanced from 0.34 to 5.02 (lg(CFU/mL)) with inlet temperature rising from 20 to 60 ℃. The reduction inE. coli at 190 MPa and 20 ℃ was enhanced from 1.73 to 5.15 (lg(CFU/mL)) with increasing number of passes from 1 to 4.The Weibull model provided a good fit to the inactivation curves of E. coli at different HPH treatments, with R2 > 0.90. Thesimplified Weibull models were fitted well under 20–50 ℃/40–190 MPa for one pass and 20–40 ℃/190 MPa for 1–5 passes(R2 > 0.92). The simplified Weibull models to predict HPH inactivation kinetics of E. coli could provide a theoretical basisfor microbial safety control in the HPH processing of mango juice.
Keywords:mango juice  inlet temperature  number of passes  pressure  Escherichia coli  Weibull model  
本文献已被 CNKI 等数据库收录!
点击此处可从《食品科学》浏览原始摘要信息
点击此处可从《食品科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号