首页 | 官方网站   微博 | 高级检索  
     


Kinetic model for reduction of iron oxide in molten slags by iron-carbon melt
Authors:Amitava Paul  Brahma Deo  Narayanasami Sathyamurthy
Abstract:Rate of reduction of iron oxide in iron and steelmaking slags by mass contents of dissolved carbon (>3%) in molten iron depends upon activity of FeO, temperature, mixing of bulk slag and other experimental conditions. A general kinetic model is developed by considering mass transfer of FeO in slag, chemical reaction at gas-metal interface and chemical reaction at gas-slag interface, respectively, as the three rate controlling steps. A critical analysis of the experimental data reported in literature has been done. It is shown that in the case of slags containing mass contents of less than 5% FeO, the reduction of FeO is controlled by mass transfer of FeO in slag plus chemical reaction at gas-metal interface; when slags contain more than 40% FeO, the reduction of FeO is controlled by chemical reaction at gas-metal interface plus chemical reaction at gas-slag interface; at intermediate FeO mass contents (between ~ 5 and 40% FeO), the reduction of FeO is controlled by all three steps, namely, mass transfer of FeO in slag, chemical reaction at gas-metal interface and chemical reaction at gas-slag interface. The temperature dependence of rate constant for the gas-slag reaction is obtained as: In k2 = –32345.4(&6128)/ T + 19.0(&3.42); σlnk2,1/T = &0.3. where k2 is expressed in mol m-2 s-1 bar-1. The mass transfer coefficient of iron oxide in bulk slag is found to vary in the range 1.5 × 10-5 to 5.0 × 10-5 m/s, depending upon the slag composition as well as experimental conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号