首页 | 官方网站   微博 | 高级检索  
     


Initialization of phase-field fracture propagation in porous media using probability maps of fracture networks.
Affiliation:1. The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA;2. RICAM, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria;3. John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, USA;1. Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France;2. The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China;3. Université Paris-Est, Laboratoire Navier, CNRS UMR 8205, ENPC, IFSTTAR, 6/8 avenue Blaise Pascal, 77455 Marne-la-Vallée, France
Abstract:It is well known in the geophysical community that surface deflection information/micro-seismic data are considered to be one of the best diagnostics for revealing the volume of rock fracture. However, the in-exactness of the data representing the deformation induced to calibrate and represent complex fracture networks created and connected during hydraulic fracturing presents a challenge. In this paper, we propose a technique that implements a phase-field approach to propagate fractures and their interaction with existing fracture networks using surface deflection data. The latter one provides a probability map of fractures in a heterogeneous reservoir. These data are used to initialize both the location of the fractures and the phase-field function. In addition, this approach has the potential for optimizing well placement/spacing for fluid-filled fracture propagation for oil and gas production and or carbon sequestration and utilization. Using prototype models based on realistic field data, we demonstrate the effects of interactions between existing and propagating fractures in terms of several numerical simulations with different probability thresholds, locations, and numbers of fractures. Our results indicate that propagating fractures interact in a complex manner with the existing fracture network. The modeled propagation of hydraulic fractures is sensitive to the threshold employed within the phase-field approach for delineating fractures.
Keywords:Hydraulic fracturing  Probability map  Phase-field fracture formulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号