首页 | 官方网站   微博 | 高级检索  
     


High-performance silica nanoparticle reinforced poly (vinyl alcohol) as templates for bioactive nanocomposites
Authors:Mrinal Bhattacharya  Sunayana Chaudhry
Affiliation:Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, United States
Abstract:Silica nanoparticle reinforced poly (vinyl alcohol) cast sheets 40 μm thick were tested for mechanical and biological properties. The films were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The crystallinity decreased with increased silica content. Changes in the morphology and structure upon the addition of silica suggest the formation of cross-linking. The modulus increased from 300 MPa for PVA to 7.2 GPa for 120 wt.% silica nanoparticle in the blend and the tensile strength increased from 3.5 MPa to 35 MPa. The modulus estimated using dynamic tests, tensile tests, and nanoindentation was comparable and was predicted well using the Halpin-Tsai's equation. The nanocomposites were an order of magnitude tougher than the pure polymer. Silica based nanocomposite was also found to be an excellent template for the deposition of calcium hydroxyapatite when immersed in simulated body fluid. The modulus and tensile strength of apatite coated silica nanoparticle (120 wt.%)–PVA composite increased to 11 GPa and 65 MPa respectively, close to that of cortical bone. The results represent one of the largest increases in mechanical properties of nanocomposite mimicking the properties of human bone. The addition of silica can also aid in osseointegration.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号