首页 | 官方网站   微博 | 高级检索  
     


Ionic mechanism of 4-aminopyridine action on leech neuropile glial cells
Authors:Müller M  Dierkes P W  Schlue W R
Affiliation:Institut für Neurobiologie, Heinrich-Heine-Universit?t Düsseldorf, Universit?tstrasse 1, D-40225, Düsseldorf, Germany. mmueller@duke.edu
Abstract:Extracellular 4-aminopyridine (4-AP), tetraethylammonium chloride (TEA) and quinine depolarized the neuropile glial cell membrane and decreased its input resistance. As 4-AP induced the most pronounced effects, we focused on the action of 4-AP and clarified the ionic mechanisms involved. 4-AP did not only block glial K+ channels, but also induced Na+ and Ca2+ influx via other than voltage-gated channels. The reversal potential of the 4-AP-induced current was -5 mV. Application of 5 mM Ni2+ or 0.1 mM d-tubocurarine reduced the 4-AP-induced depolarization and the associated decrease in input resistance. We therefore suggest that 4-AP mediates neuronal acetylcholine release, apparently by a presynaptic mechanism. Activation of glial nicotinic acetylcholine receptors contributes to the depolarization, the decrease in input resistance, and the 4-AP-induced inward current. Furthermore, the 4-AP-induced depolarization activates additional voltage-sensitive K+ and Cl- channels and 4-AP-induced Ca2+ influx could activate Ca2+-sensitive K+ and Cl- channels. Together these effects compensate and even exceed the 4-AP-mediated reduction in K+ conductance. Therefore, the 4-AP-induced depolarization was paralleled by a decreasing input resistance.
Keywords:Potassium channel pharmacology  Neuron-glial interaction  Acetylcholine release  Calcium influx  Sodium influx  Input resistance
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号