首页 | 官方网站   微博 | 高级检索  
     


N,P co-doped porous graphene with high electrochemical properties obtained via the laser induction of cellulose nanofibrils
Authors:Jie Wei  Weiwei Yang  Shuai Jia  Jie Wei  Ziqiang Shao
Affiliation:Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract:Cellulose and its derivatives are natural materials with high carbon contents, but it is challenging to convert their carbon into high value-added carbonaceous materials (e.g., graphene). Here, an approach to convert the carbon in cellulose into N, P co-doped porous graphene (LIG) materials via laser induction is proposed. Cellulose nanofibrils (CNFs), a cellulose derivative with high dispersion uniformity and abundant surface hydroxyl groups, were easily formed on a bulk substrate (thickness ≥ 5 mm) containing ammonium polyphosphate (APP). Then, a 10.6 μm CO2 laser was used to scribe for 1-5 passes on the CNFs/APP substrate under an ambient environment to produce N, P co-doped porous LIG. Upon increasing the number of laser scribing passes, the IG/ID of LIG first increased and then decreased, reaching a maximum of 1.68 at 4 passes. The good pore structure and low resistance also showed that 4 laser passes were ideal. Besides, the N, P co-doped LIG also showed excellent electrochemical performance, with a specific capacitance of 221.4 F?g-1 and capacitance retention of 89.9%. This method exploits the advantages of nanocellulose and overcomes the difficulties associated with directly compounding cellulosic materials, providing a method for the further development of biomass nanomaterials.
Keywords:Cellulose nanofibrils   Laser induction   Porous graphene   Multiple lasing   Supercapacitor
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号