首页 | 官方网站   微博 | 高级检索  
     

光滑函数实根计算的渐进显式公式
作者姓名:祝平  陈小雕  马维银  姜霓裳
作者单位:1.杭州电子科技大学 计算机学院,浙江 杭州 310018
2.香港城市大学 机械工程学系,中国 香港
3.杭州电子科技大学 理学院,浙江 杭州 310018
基金项目:国家自然科学基金资助项目(61972120).
摘    要:求根问题在计算机图形学、机器人技术、地磁导航等领域应用广泛。基于重新参数化方法(reparamaterization-based method,RBM),给出了用于计算给定光滑函数在某区间内唯一实根的渐进式显式公式。给定光滑函数ft),用有理多项式Ais)对曲线Ct)=(t,ft))进行插值,得到重新参数化函数t =?is),使得Aisj)=C?isj))。提出了基于重新参数化函数?is)的显式公式用于渐进式逼近ft)对应的实根,在n个函数计算的成本下,收敛阶可达到3·2n-2,其中n≥3。与类牛顿法相比,本文方法提高了计算稳定性,且收敛速度更快、计算效率更高。与裁剪法相比,本文方法不需要求解包围多项式,且可用于非多项式函数计算,计算效率更高。数值实例表明,每增加一个插值点,逼近阶可提高一倍,且可获得较传统裁剪法更高的计算效率。

关 键 词:裁剪方法  求根计算  数值迭代法  收敛阶  重新参数化  
收稿时间:2020-09-30
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江大学学报(理学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号