首页 | 官方网站   微博 | 高级检索  
     


Electrical resistivity of silicon nitride produced by various methods
Authors:O.A. Lukianova  A.N. Khmara  S.N. Perevislov  D.A. Kolesnikov  V.V. Krasilnikov
Affiliation:1. Belgorod National Research University, 85, Pobedy Str., 308015 Belgorod, Russia;2. Institute of Silicate Chemistry, Russian Academy of Sciences, Saint Petersburg (ex Leningrad), Russia
Abstract:It has been shown that the grain growth and amount of the glass phase influence the electrical resistivity of pressureless sintered and spark plasma sintered silicon nitride. Sintering additives strongly affect the impurity conductivity of pressureless sintered silicon nitride and slightly influence the intrinsic conductivity due to the longer sintering process as compared with the spark plasma sintering. It was demonstrated that Al2O3-Y2O3 lead to decrease in the electrical resistivity of SPSed silicon nitride due to increase in the band gap width as opposed to Al2O3-MgO. Effect of the sintering additive on the impurity conductivity is practically absent but there is a strong dependence of the sintering temperature for reported spark plasma sintered silicon nitride. However, intrinsic conductivity of SPSed silicon nitride is affected by both sintering temperature and sintering additive. It was also shown that electrical resistivity of produced ceramics is linearly depends on the content of β-Si3N4 and microhardness. Electrical resistivity of manufactured silicon nitride varied from 3.16·109 to 1.73·1011 Ω?m. It has been observed strong influence of the sintering additive and sintering temperature on the electrical properties of SPSed and pressureless sintered silicon nitride.
Keywords:Silicon nitride  Electrical resistivity  Magnesium oxide  Pressureless sintering  Spark plasma sintering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号