首页 | 官方网站   微博 | 高级检索  
     


Biofouling alleviation and flux enhancement of electrospun PAN microfiltration membranes by embedding of para‐aminobenzoate alumoxane nanoparticles
Authors:G Moradi  L Rajabi  F Dabirian  S Zinadini
Affiliation:1. Polymer Research Laboratory, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran;2. Department of Mechanical Engineering, College of Engineering, Razi University, Kermanshah, Iran;3. Environmental Research Center, Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
Abstract:Membrane bioreactor (MBR) as a hybrid technology for wastewater treatment is becoming more popular for wastewater treatment. However, membrane fouling has hindered the widespread application of MBRs. Many efforts have been done for fouling mitigation. In this study, high flux and antifouling microfiltration membranes with unique surface structure, high surface porosity, and permeability were prepared by electrospinning technique. Initially, the optimum thickness of electrospun polyacrylonitrile (PAN) membranes was determined and then, electrospun PAN membrane at optimum thickness were prepared by embedding para‐aminobenzoate alumoxane (PABA) nanoparticles at different concentrations. The effect of PABA nanoparticles on membrane performance was investigated. To investigate the characterization of the prepared membranes Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, and water contact angle measurement were employed. The flux recovery ratio results revealed that the antifouling properties of the electrospun PAN membrane were enhanced by modification. The 3 wt % electrospun PABA embedded PAN had the best permeability, hydrophilicity, and antifouling properties among the fabricated membranes and showed remarkable reusability during filtration. The results obtained suggested that the high flux and antifouling electrospun PAN membranes embedded PABA nanoparticles could be used as MBR membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45738.
Keywords:electrospinning  hydrophilic polymers  membranes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号