首页 | 官方网站   微博 | 高级检索  
     


Microencapsulation of APP‐I and influence of microencapsulated APP‐I on microstructure and flame retardancy of PP/APP‐I/PER composites
Authors:Jian Zhou  Lin Yang  Xinlong Wang  Quanjun Fu  Qiaolu Sun  Zhiye Zhang
Affiliation:School of Chemical Engineering of Sichuan University, Chengdu, Sichuan 610065, China
Abstract:In this article, the microencapsulated ammonium polyphosphate crystalline with form I (APP‐I) coated with melamine‐formaldehyde (MF) was prepared by in situ polymerization. Results of Fourier transform infrared spectra (FTIR), thermogravimetry (TG) energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) demonstrate that APP‐I is successfully microencapsulated with MF. Compared with APP‐I, the microencapsulated APP‐I with MF (MFAPP‐I) is of much smaller spheroidal particle size and lower solubility in water. In this study, the polypropylene (PP)/APP‐I/penpaerythritol (PER) and PP/MFAPP‐I/PER composites are prepared, and flame retardancy, thermal stability, and microstructure of corresponding composites are carefully investigated by limiting oxygen index (LOI), UL‐94 testing, TG, EDS, and SEM. Experimental results show that PP/MFAPP‐I/PER composites have advantages over PP/APP‐I/PER composites in terms of flame retardant properties and water resistance. Results of TG, SEM, and EDS show that the microencapsulated APP‐I with MF resin is conducive to increase the amount of residual yield and improve thermal stability of PP/MFAPP‐I/PER composites and the compatibility and dispersion of MFAPP‐I. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Keywords:flame retardance  applications  composites  functionalization of polymers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号