首页 | 官方网站   微博 | 高级检索  
     


Neutralizing Coal Mine Effluent with Limestone to Decrease Metals and Sulphate Concentrations
Authors:Email author" target="_blank">J?P?MareeEmail author  M?de?Beer  W?F?Strydom  A?D?M?Christie  F?B?Waanders
Affiliation:(1) Div of Water, Environment and Forestry Technology, CSIR, PO Box 395, Pretoria, 0001, South Africa;(2) SA Coal Estates, PO Box 2851, Witbank, 1035, South Africa;(3) School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom, 2531, South Africa
Abstract:Abstract.   This paper describes pilot scale tests of a novel process for the neutralisation of acidic mine water. Leachate from a waste coal dump was neutralised with limestone, and iron, aluminium, and sulphate were removed. Specific aspects studied were: the process configuration; the rates of iron oxidation, limestone neutralisation, and gypsum crystallisation; the chemical composition of the effluents before and after treatment; the efficiency of limestone utilisation; and the sludge solids content. The acidity was decreased from 12,000 to 300 mg/L (as CaCO3), sulphate from 15,000 to 2,600 mg/L, iron from 5,000 to 10 mg/L, aluminium from 100 to 5 mg/L, while the pH increased from 2.2 to 7.0. Reaction times of 2.0 and 4.5 h were required under continuous and batch operations respectively for the removal of 4 g/L Fe (II). The iron oxidation rate was found to be a function of the Fe (II), hydroxide, oxygen, and suspended solids (SS) concentrations. The optimum SS concentration for iron oxidation in a fluidised-bed reactor was 190 g/L. Up-flow velocity had no influence on the rate of iron oxidation in the range 5 to 45 m/h. Sludge with a high solids content of 55% (m/v) was produced. This is high compared to the typical 20% achieved with the high density sludge process using lime. It was determined that neutralisation costs could be reduced significantly with an integrated iron oxidation and limestone neutralisation process because limestone is less expensive than lime, and a high-solids-content sludge is produced. Full scale implementation followed this study.
Keywords:" target="_blank">                :                Acid mine drainage  iron oxidation  limestone neutralization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号