首页 | 官方网站   微博 | 高级检索  
     


Fracture prediction of thin plates under localized impulsive loading. Part II: discing and petalling
Authors:Young-Woong Lee  Tomasz Wierzbicki
Affiliation:

Impact and Crashworthiness Laboratory, Massachusetts Institute of Technology, Room 5-218, Cambridge, MA 02139, USA

Abstract:The onset of fracture and subsequent propagation of radial cracks of thin clamped circular plates under localized impulsive loading were predicted analytically and numerically for discing and petalling stages with increasing intensity of applied impulse and various radii of loaded area. The equivalent plastic strain times the average stress triaxiality was introduced as a ductile fracture criterion in the numerical simulation. The strain hardening law and critical damage/fracture function was calibrated from tensile test on round specimen and a parallel numerical simulation. Based on the critical damage value, and calculated distributions and histories of stress and strain, the initiation site and extent of fracture were predicted for a range of loading radii and intensity of applied impulse. It was clearly demonstrated that the crack length and final deformed shapes of plates are strongly influenced by the spatial distribution and intensity of impulsive loading. A comparative study on the propagation of radial cracks was also presented. Finally, the numerically obtained crack length was shown to agree well with the closed form solution derived earlier by one of the present authors.
Keywords:Impulsive loading  Dynamic pressure  FEM  Ductile fracture  Equivalent strain  Stress triaxiality  Discing  Petalling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号