首页 | 官方网站   微博 | 高级检索  
     


Mechanism of heat transport in nanofluids
Authors:Manju Prakash and E. P. Giannelis
Affiliation:(1) Materials Science and Engineering Department, Cornell University, Ithaca, NY 14853, USA
Abstract:We have calculated thermal conductivity of alumina nanofluids (with water and ethylene glycol as base fluids) using temperature as well as concentration-dependent viscosity, η. The temperature profile of η is obtained using Gaussian fit to the available experimental data. In the model, the interfacial resistance effects are incorporated through a phenomenological parameter α. The micro-convection of the alumina nanoparticle (diameter less than 100 nm) is included through Reynolds and Prandtl numbers. The model is further improved by explicitly incorporating the thermal conductivity of the nanolayer surrounding the nanoparticles. Using this improved model, thermal conductivity of copper nanofluid is calculated. These calculations capture the particle concentration-dependent thermal conductivity and predict the dependence of the thermal conductivity on the size of the nanoparticle. These studies are significant to understand the underlying processes of heat transport in nanofluids and are crucial to design superior coolants of next generation.
Keywords:Nanofluid  Nanoparticles  Thermal conductivity  Brownian motion  Interfacial resistance  Nanolayer
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号