首页 | 官方网站   微博 | 高级检索  
     

时间相干电场的外周神经无损刺激
引用本文:吴永亮,王子木,丁孝宇,仓臣,郑政.时间相干电场的外周神经无损刺激[J].中国生物医学工程学报,2020,39(1):50-56.
作者姓名:吴永亮  王子木  丁孝宇  仓臣  郑政
作者单位:(上海理工大学医疗器械与食品学院,上海 200093)
摘    要:外周神经电刺激可用于运动康复和慢性神经痛治疗,但目前具有空间选择性的无损刺激仍是一个有待解决的问题。提出一种基于时间相干(TI)电场的外周神经选择性无损电刺激方法,对大鼠坐骨神经进行实验,在其大腿腹侧与背侧皮肤上以平行于神经的方向布置刺激电极,通过相干电场扫描,将TI刺激峰值定位到神经上进行选择性刺激。结果表明,该方法可以在预先不知道神经确切位置的情况下通过扫描得出将刺激电场作用到神经的最佳电参数,从而实现对神经的选择性无损刺激,而且在刺激作用点不变的前提下实现刺激强度的控制。在此基础上研究TI电场对大鼠坐骨神经的刺激阈值IT,测量固定频差Δf=0.5 Hz(n=12),改变频率f=1~6 kHz与固定f=5 kHz(n=11),改变频差Δf=0.5~10 Hz下的IT,并将其和等幅kHz电场(n=7)的IT进行比较。结果表明,等幅kHz电场的IT显著高于TI电场(P<0.05),而且不同频率f下的IT也有显著性差异(P<0.05),而不同频差Δf下的IT却没有显著性差异(P>0.05),说明TI电流对大鼠坐骨神经的ITf影响而不受Δf影响,且刺激阈值IT与频率f成正比关系。

关 键 词:无损刺激  外周神经  时间干涉电场  
收稿时间:2019-01-03

Peripheral Nerve Noninvasive Stimulation via Temporally Interfering Electric Fields
Wu Yongliang,Wang Zimu,Ding Xiaoyu,Cang Chen,Zheng Zheng.Peripheral Nerve Noninvasive Stimulation via Temporally Interfering Electric Fields[J].Chinese Journal of Biomedical Engineering,2020,39(1):50-56.
Authors:Wu Yongliang  Wang Zimu  Ding Xiaoyu  Cang Chen  Zheng Zheng
Affiliation:(School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract:Peripheral nerve electrical stimulation can be used for sports rehabilitation and chronic neuralgia treatment, but the current spatially selective non-invasive stimulation remains a problem to be solved. A non-invasive peripheral nerve electrical stimulation method that features a certain level of selectivity was developed based on the temporally interfering (TI) electric field. The rat sciatic nerve was tested and the stimulating electrodes were arranged in the direction parallel to the nerve on the ventral and dorsal skin of the thigh. The TI stimulation peak was localized to the nerve for selective stimulation by the scan of interfering electric field. The results showed that optimal electrical parameters, through which the electrical field was delivered to the nerve, could be acquired by scanning without knowing the exact location of the nerve in advance. Thus, selective non-invasive stimulation of nerves could be achieved and the control of the intensity of stimulation could be realized under the premise of keeping the stimulation focus fixed. On this basis, the stimulation threshold IT of TI electric field on rat sciatic nerve was explored and IT of different conditions were measured as well, including fixing frequency difference Δf=0.5 Hz (n=12), changing the frequency f=1~6 kHz and fixed f=5 kHz (n=11), changing the frequency difference Δf=0.5~10 Hz, at the same time, compared with that of equal amplitude kHz electric field (n=7). The results demonstrated that the IT of the equal-amplitude kHz electric field is significantly higher than that of the TI electric field (P<0.05), and there is a significant difference in the IT at different frequencies f(P<0.05), while no remarkable difference in the IT of different Δf(P<0.05), which was different between two frequencies, was observed, indicating that the stimulation threshold of TI electric field on rat sciatic nerve was affected by frather than Δf, and the stimulation threshold IT was proportional to the frequency f.
Keywords:non-invasive stimulation  peripheral nerve  temporally interfering electric fields  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国生物医学工程学报》浏览原始摘要信息
点击此处可从《中国生物医学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号