首页 | 官方网站   微博 | 高级检索  
     


Experimental investigation on viscosity of Cu-H2O nanofluids
Authors:Xinfang Li  Dongsheng Zhu  Xianju Wang
Affiliation:(1) Department of Packaging & Printing, Zhongshan Torch Vocation and Technology College, Zhongshan, 528436, China;(2) Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, South China University of Technology, Guangzhou, 510641, China;(3) Navy Arms of Services Command Academy, Guangzhou, 510431, China
Abstract:A procedure for preparing a nanofluid that a solid-liquid composite material consists of solid nanoparticles with sizes typically of 1–100 nm suspended in liquid was proposed. By means of the procedure, Cu-H2O nanofluids with and without dispersant were prepared, whose sediment photographs and particle size distribution were given to illustrate the stability and evenness of suspension with dispersant. The viscosity of Cu-H2O nanofluid was measured using capillary viscometers. The mass fractions(w) of copper nanoparticles in the experiment varied between 0.04% and 0.16% with the temperature range of 30–70 °C. The experimental results show that the temperature and SDBS concentration are the major factors affecting the viscosity of the nano-copper suspensions, while the effect of the mass fraction of Cu on the viscosity is not as obvious as that of the temperature and SDBS dispersant for the mass fraction chosen in the experiment. The apparent viscosity of the copper nano-suspensions decreases with the temperature increase, and increases slightly with the increase of the mass fraction of SDBS dispersant, and almost keeps invariability with increasing the mass fraction of Cu. The influence of SDBS concentration on the viscosity of nano-suspension was relatively large comparing with that of the nanoparticle concentration. Funded by Guangdong Provincial Natural Science Foundation (No. 04105950), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050561017), and Program for New Century Excellent Talents in University (No. NCET-04-0826)
Keywords:nano-Cu/water suspension  SDBS  kinematic viscosity  capillary viscometer
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号