首页 | 官方网站   微博 | 高级检索  
     


Advances in a 300 Hz thermoacoustic cooler system working within liquid nitrogen temperature range
Authors:Guoyao Yu
Affiliation:Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract:With the combined advantages of high reliability, compact size and low electromagnetic interference, a high frequency operating thermoacoustic cooler system, i.e. a pulse tube cooler driven by a thermoacoustic heat engine, is quite promising for space applications. This article introduced a high frequency standing-wave thermoacoustic heat engine-driven pulse tube cooler system working around 300 Hz with axial length being 1.2 m. To improve the thermal efficiency of such system, an optimization has been carried out, both analytically and experimentally, by observing the influence of the dimensions of the stack, the hot buffer length and the acoustic pressure amplifier tube length. So far, a no-load temperature of 68.3 K has been obtained with 4.0 MPa helium and 750 W heating power. With 500 W heating power, a no-load temperature of 76.9 K and 0.2 W cooling power at 80 K have been achieved. Compared with former reports, the performance has been improved.
Keywords:High frequency   Standing-wave thermoacoustic heat engine   Pulse tube cooler   Cooling power
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号