首页 | 官方网站   微博 | 高级检索  
     


High performance TaYOx-based MIM capacitors
Authors:C Mahata  MK Bera  T Das  B Majhi  PK Bose
Affiliation:a Dept. of Electronics and ECE, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
b Frontier Collaborative Research Center (FCRC), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
c Institute of Physics, Bhubaneswar 751005, India
d Mechanical Engineering Department, Jadavpur University, Jadavpur, Kolkata 700032, West Bengal, India
Abstract:TaYOx-based metal-insulator-metal (MIM) capacitors with excellent electrical properties have been fabricated. Ultra-thin TaYOx films in the thickness range of 15-30 nm (EOT ∼ 2.4-4.7 nm) were deposited on Au/SiO2 (100 nm)/Si (100) structures by rf-magnetron co-sputtering of Ta2O5 and Y2O3 targets. TaYOx layers were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) to examine the composition and crystallinity. An atomic percentage of Ta:Y = 58.32:41.67 was confirmed from the EDX analysis while XRD revealed an amorphous phase (up to 500 °C) during rapid thermal annealing. Besides, a high capacitance density of ∼3.7-5.4 fF/μm2 at 10 kHz (εr ∼ 21), a low value of VCC (voltage coefficients of capacitance, α and β) have been achieved. Also, a highly stable temperature coefficient of capacitance, TCC has been obtained. Capacitance degradation phenomena in TaYOx-based MIM capacitors under constant current stressing (CCS at 20 nA) have been studied. It is observed that degradation depends strongly on the dielectric thickness and a dielectric breakdown voltage of 3-5 MV/cm was found for TaYOx films. The maximum energy storage density was estimated to be ∼5.69 J/cm3. Post deposition annealing (PDA) in O2 ambient at 400 °C has been performed and further improvement in device reliability and electrical performances has been achieved.
Keywords:High-k dielectric  MIM capacitor  RF sputter deposition  TaYOx
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号