首页 | 官方网站   微博 | 高级检索  
     


In-plane gas permeability of proton exchange membrane fuel cell gas diffusion layers
Authors:A Tamayol  M Bahrami
Affiliation:School of Engineering Science, Simon Fraser University, BC, Canada
Abstract:A new analytical approach is proposed for evaluating the in-plane permeability of gas diffusion layers (GDLs) of proton exchange membrane fuel cells. In this approach, the microstructure of carbon papers is modeled as a combination of equally-sized, equally-spaced fibers parallel and perpendicular to the flow direction. The permeability of the carbon paper is then estimated by a blend of the permeability of the two groups. Several blending techniques are investigated to find an optimum blend through comparisons with experimental data for GDLs. The proposed model captures the trends of experimental data over the entire range of GDL porosity. In addition, a compact relationship is reported that predicts the in-plane permeability of GDL as a function of porosity and the fiber diameter. A blending technique is also successfully adopted to report a closed-form relationship for in-plane permeability of three-directional fibrous materials.
Keywords:PEM fuel cell  In-plane gas permeability  Gas diffusion layer  Blending technique  Fibrous media
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号