首页 | 官方网站   微博 | 高级检索  
     


In vivo chlorine and sodium MRI of rat brain at 21.1 T
Authors:Victor D Schepkin  Malathy Elumalai  Jason A Kitchen  Chunqi Qian  Peter L Gor’kov  William W Brey
Affiliation:1. National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310-4005, USA
2. National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
Abstract:

Object

MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development.

Materials and methods

MRI of 35Cl and 23Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method.

Results

T 1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T 1a = 4.8 ms (0.7) T 1b = 24.4 ± 7 ms (0.3) and compared with sodium (T 1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of $ T_{{2{\text{a}}}}^{*} = 0.4 $  ms and $ T_{{2{\text{a}}}}^{*} = 0.53 $  ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain.

Conclusion

The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号