首页 | 官方网站   微博 | 高级检索  
     


Porous and single-skinned polyethersulfone membranes support the growth of HepG2 cells: a potential biomaterial for bioartificial liver systems
Authors:Zhang Shi-Chang  Liu Tao  Wang Ying-Jie
Affiliation:Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
Abstract:In this study, we evaluated a porous and single-layer skin polyethersulfone (PES) membrane as a material for use in hybrid bioartificial liver support systems. The PES membrane has been characterized as a single-layer skin structure, with a rough porous surface. Specifically, we studied the ability of the human hepatoblastoma cell lines (HepG2) to adhere, grow, and spread on the PES membrane. Furthermore, we examined albumin secretion, low-density lipoprotein uptake, and CYP450 activity of HepG2 cells that grew on the membrane. HepG2 cells readily adhered onto the outer surfaces of PES membranes. Over time, HepG2 cells proliferated actively, and confluent monolayer of cells covered the available surface area of the membrane, eventually forming cell clusters and three-dimensional aggregates. Furthermore, HepG2 cells grown on PES membranes maintained highly specific functions, including uptake capability, biosynthesis and biotransformation. These results indicate that PES membranes are potential substrates for the growth of human liver cells and may be useful in the construction of hollow fiber bioreactors. Porous and single-layer skin PES membranes and HepG2 cells may be potential biomaterials for the development of biohybrid liver devices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号