首页 | 官方网站   微博 | 高级检索  
     


Microstructure and electrical characteristics of Ba0.65Sr0.35TiO3 thin films etched in CF4/Ar/O2 plasma
Authors:Zuci Quan
Affiliation:Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Center of Nanoscience and Nanotechnology Research, Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China
Abstract:Radio frequency magnetron sputtered Ba0.65Sr0.35TiO3 (BST) thin films were etched in CF4/Ar/O2 plasma by magnetically enhanced reactive ion etching technique. The etching characteristics of BST films were characterized in terms of microstructure and electrical properties. Atomic force microscopy and X-ray diffraction results indicate that the microstructure of the etched BST film is degraded because of the rugged surface and lowered intensities of BST (1 0 0), (1 1 0), (1 1 1) and (2 0 0) peaks compared to the unetched counterparts. Dielectric constant and dielectric dissipation of the unetched, etched and postannealed-after-etched BST film capacitors are 419, 346, 371, 0.018, 0.039 and 0.031 at 100 kHz, respectively. The corresponding dielectric tunability, figure of merit and remnant polarization are 19.57%, 11.56%, 17.25%, 10.87, 2.96, 5.56, 3.62 μC/cm2, 2.32 and 2.81 μC/cm2 at 25 V, respectively. The leakage current density of 1.75 × 10−4 A/cm2 at 15 V for the etched BST capacitor is over two orders of magnitude higher than 1.28 × 10−6 A/cm2 for the unetched capacitor, while leakage current density of the postannealed-after-etched capacitor decreases slightly. It means that the electrical properties of the etched BST film are deteriorated due to the CF4/Ar/O2 plasma-induced damage. Furthermore, the damage is alleviated, and the degraded microstructure and electrical properties are partially recovered after the etched BST film is postannealed at 923 K for 20 min under a flowing O2 ambience.
Keywords:BST thin films   Microstructure   Plasma-induced damage   Electrical characteristics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号