首页 | 官方网站   微博 | 高级检索  
     


Single‐Pot Ethane Carboxylation Catalyzed by New Oxorhenium(V) Complexes with N,O Ligands
Authors:Alexander   M. Kirillov,Matti Haukka,Marina   V. Kirillova,Armando   J.   L. Pombeiro
Abstract:The oxorhenium(V) chelates [ReOCl(N,O‐L)(PPh3)] [N,O‐L=(OCH2CH2)N(CH2CH2OH)(CH2COO) ( 2 ), (OCH2CH2)N(CH2COO)(CH2COOCH3) ( 3 )] and [ReOCl2(N,O‐L)(PPh3)] [N,O‐L=C5H4N(COO‐2) ( 4 ) C5H3N(COOCH3‐2)(COO‐6) ( 5 )] have been prepared by reaction of [ReOCl3(PPh3)2] ( 1 ), in refluxing methanol, with N,N‐bis(2‐hydroxyethyl)glycine [bicine; N(CH2CH2OH)2(CH2COOH)], N‐(2‐hydroxyethyl)iminodiacetic acid [N(CH2CH2OH)(CH2COOH)2], picolinic acid [NC5H4(COOH‐2)] or 2,6‐pyridinedicarboxylic acid [NC5H3(COOH‐2,6)2], respectively, with ligand esterification in the cases of 3 and 5 . All these complexes have been characterized by IR and multinuclear NMR spectroscopy, FAB+‐MS, elemental and X‐ray diffraction structural analyses. They act as catalysts, in a single‐pot process, for the carboxylation of ethane by CO, in the presence of potassium peroxodisulfate K2S2O8, in trifluoroacetic acid (TFA), to give propionic and acetic acids, in a remarkable yield (up to ca. 30%) and under relatively mild conditions, with some advantages over the industrial processes. The picolinate complex 4 provides the most active catalyst and the carboxylation also occurs, although much less efficiently, by the TFA solvent in the absence of CO. The selectivity can be controlled by the ethane and CO pressures, propionic acid being the dominant product for pressures about ca. 7 and 4 atm, respectively (catalyst 4 ), whereas lower pressures lead mainly to acetic acid in lower yields. These reactions constitute an unprecedented use of Re complexes as catalysts in alkane functionalization.
Keywords:alkanes  carboxylation  C?H activation  homogeneous catalysis  N,O ligands  rhenium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号