摘 要: | 针对麻雀搜索算法在求解大规模优化问题时存在收敛速度慢、寻优精度低和易陷入局部极值的缺点,提出一种基于精英反向学习策略的萤火虫麻雀搜索算法(ELFASSA).首先,通过反向学习策略初始化种群,为全局寻优奠定基础;其次,利用萤火虫扰动策略提高算法跳出局部最优的能力并加速收敛;最后,在麻雀位置更新后引入精英反向学习策略以获取精英解及动态边界,使精英反向解可以定位在狭窄的搜索空间中,有利于算法收敛.通过选取10个高维标准测试函数进行仿真实验,将其与麻雀搜索算法(SSA)及4种先进的改进算法进行性能对比,并与3种单一策略改进的麻雀搜索算法进行改进策略的有效性分析,仿真结果表明, ELFASSA算法在收敛速度和求解精度两方面明显优于其他对比算法.
|