首页 | 官方网站   微博 | 高级检索  
     


Synthesis and semiconducting properties of Na2MnPO4F. Application to degradation of Rhodamine B under UV-light
Affiliation:1. Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, United States;2. Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, United States
Abstract:Na2MnPO4F is synthesized by hydrothermal route at 453 K and the physical properties and photo-electrochemical characterizations are reported. The compound crystallizes in a monoclinic system (SG: P 21/n) with the lattice constants: a=13.7132 Å, b=5.3461 Å, c=13.7079 Å, β=119.97°. The UV–visible spectroscopy shows an indirect optical transition at 2.68 eV; a further direct transition occurs at 3.70 eV, due to the charge transfer O2−: 2p → Mn2+: eg. The thermal variation of the electrical conductivity is characteristic of a semiconducting behavior with activation energy of 39 meV and an electron mobility (µ318 K=5.56×10−4 cm2 V−1 s−1), thermally activated. The flat band potential (+0.47 VSCE) indicates that the valence band derives mainly from O2−: 2p orbital with a small admixture of F character while the conduction band is made up of Mn2+: t2g orbital. The electrochemical impedance spectroscopy shows the contribution of both the bulk and grains boundaries. The photocatalytic performance of Na2MnPO4F for the degradation of Rhodamine B (RhB) is demonstrated on the basis of the energy diagram. 88% of the initial concentration is degraded under UV light and the oxidation follows a first order kinetic with a rate constant of 0.516 h−1. Neither adsorption nor photolysis is observed. The photoactivity results from the electron transition from the hybridized band (O2−, F) to the Mn2+: eg orbital, occurring in the UV region. The catalyst was subjected to three successive photocatalytic cycles, thus proving its long term stability.
Keywords:Semiconductor  Hydrothermal  Photocatalytic  Rhodamine B
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号