首页 | 官方网站   微博 | 高级检索  
     

换位子群是不可分Abel群的有限秩可除幂零群
引用本文:刘合国,张继平,廖 军.换位子群是不可分Abel群的有限秩可除幂零群[J].数学年刊A辑(中文版),2018,39(3):287-296.
作者姓名:刘合国  张继平  廖 军
作者单位:湖北大学数学系;北京大学数学科学学院
基金项目:本文受到国家自然科学基金(No.11131001, No.11371124, No.11401186)的资助.
摘    要:完整地确定了换位子群是不可分Abel群的有限秩可除幂零群的结构,证明了下面的定理.设G是有限秩的可除幂零群,则G的换位子群是不可分Abel群当且仅当G'=Q或Q_p/Z且G可以分解为G=S×D,其中当G'=Q时,■当G'=Q_p/Z时,S有中心积分解S=S_1*S_2*…*S_r,并且可以将S形式化地写成■其中■,式中s,t都是非负整数,Q是有理数加群,π_κ(k=1,2,…,t)是某些素数的集合,满足π_1■Cπ_2■…■π_t,Q_π_k={m/n|(m,n)=1,m∈Z,n为正的π_k-数}.进一步地,当G'=Q时,(r;s;π_1,π_2,…,π_t)是群G的同构不变量;当G'=Q_p/Z时,(p,r;s;π_1,π_2,…,πt)是群G的同构不变量.即若群H也是有限秩的可除幂零群,它的换位子群是不可分Abel群,那么G同构于H的充分必要条件是它们有相同的不变量.

关 键 词:幂零群    局部循环群    中心    换位子群    可除群
收稿时间:2016/2/3 0:00:00
修稿时间:2016/4/28 0:00:00

Radicable Nilpotent Groups of Finite Rank with Indecomposable Abelian Commutator Subgroups
LIU Heg,ZHANG Jipi and LIAO J.Radicable Nilpotent Groups of Finite Rank with Indecomposable Abelian Commutator Subgroups[J].Chinese Annals of Mathematics,2018,39(3):287-296.
Authors:LIU Heg  ZHANG Jipi and LIAO J
Affiliation:Department of Mathematics, Hubei University, Wuhan 430062, China.,School of Mathematical Sciences, Peking University, Beijing 100871, China. and Corresponding author. Department of Mathematics, Hubei University, Wuhan 430062, China.
Abstract:The structure of the radicable nilpotent groups of finite rank with indecomposable abelian commutator subgroups is completely determined. More exactly, the following theorem is proved. Let $G$ be a radicable nilpotent group of finite rank. Then the commutator subgroup of $G$ is indecomposable and abelian if and only if $G''=\mathbb{Q}$ or $\mathbb{Q}_p/\mathbb{Z}$ and $G$ has a decomposition $G=S\times D$, where $$ S=\left\{~~\left \begin{array}{ccccccc} 1&a_{12}&a_{13}&a_{14}&\cdots&a_{1~r+1}&a_{1~r+2}\0&1&0&0&\cdots&0&a_{2~r+2}\\vdots&\vdots&\ddots&\ddots&\vdots&\vdots&\vdots\\vdots&\vdots&\ddots&\ddots&\vdots&\vdots&\vdots\0&0&0&\cdots&1&0&a_{r~r+2}\0&0&0&\cdots&0&1&a_{r+1~r+2}\0&0&0&\cdots&0&0&1 \end{array} \right]~~\left| \begin{array}{c} ~~\~~\~~\a_{ij}\in \mathbb{Q} \~~\~~\~\ \end{array} \right. \right\}, $$ if $G''=\mathbb{Q}$ and $S=S_1\ast S_2\ast\cdots\ast S_r$, $S_i\cong S_p$ if $G''=\mathbb{Q}_p/\mathbb{Z}$. Write $S$ formally as \ S=\left\{~~\left \begin{array}{ccccccc} 1&a_{12}&a_{13}&a_{14}&\cdots&a_{1~r+1}&b_{1~r+2}\0&1&0&0&\cdots&0&a_{2~r+2}\\vdots&\vdots&\ddots&\ddots&\vdots&\vdots&\vdots\\vdots&\vdots&\ddots&\ddots&\vdots&\vdots&\vdots\0&0&0&\cdots&1&0&a_{r~r+2}\0&0&0&\cdots&0&1&a_{r+1~r+2}\0&0&0&\cdots&0&0&1 \end{array} \right]~~\left| \begin{array}{c} ~~\~~\~~\a_{ij}\in \mathbb{Q} \b_{1~r+2}\in \mathbb{Q}_p/\mathbb{Z}\~~\~\ \end{array} \right. \right\}. \] Here $D$ is a divisible abelian group such that $D \cong \underbrace{\mathbb{Q}\oplus\mathbb{Q}\oplus\cdots\oplus\mathbb{Q}}_s\bigoplus\bigoplus\limits_{k=1}^t(\mathbb{Q}_{\pi_k}/\mathbb{Z})$, where $s$ and $t$ are nonnegative integers, and $\mathbb{Q}$ is the additive group of the rational number field, where $\pi_k$ $(k=1, 2,\cdots,t)$ are the sets of some prime numbers such that $\pi_1\subseteq\pi_2\subseteq \cdots \subseteq \pi_t$, and $\mathbb{Q}_{\pi_k}=\{\frac mn\mid(m,n)=1,\ m\in \mathbb{Z},\ n\mbox{ is a positive $\pi_k$-number}\}$. Moreover, $(p, r; s; \pi_1, \pi_2, \cdots, \pi_t)$ is an isomorphic invariant of $G$, that is to say, if $H$ is also a radicable nilpotent group of finite rank with indecomposable abelian commutator subgroup, then $G$ is isomorphic to $H$ if and only if they have the same invariants.
Keywords:Nilpotent group  Locally cyclic group  center  Commutator subgroup  Radicable group
本文献已被 CNKI 等数据库收录!
点击此处可从《数学年刊A辑(中文版)》浏览原始摘要信息
点击此处可从《数学年刊A辑(中文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号