首页 | 官方网站   微博 | 高级检索  
     

基于改进多嵌入空间的实时语义数据流推理
作者姓名:高峰  姚光涛  顾进广
作者单位:1. 武汉科技大学 计算机科学与技术学院, 武汉 430065;2. 武汉科技大学 大数据科学与工程研究院, 武汉 430065;3. 智能信息处理与实时工业系统湖北省重点实验室, 武汉 430065;4. 富媒体数字出版内容组织与知识服务重点实验室, 武汉 430065
基金项目:国家自然科学基金(U1836118);;国家社会科学基金重大计划(11&ZD189);;湖北省自然科学基金(2018CFB194);
摘    要:将语义数据流处理引擎与知识图谱嵌入表示学习相结合,可以有效提高实时数据流推理查询性能,但是现有的知识表示学习模型更多关注静态知识图谱嵌入,忽略了知识图谱的动态特性,导致难以应用于实时动态语义数据流推理任务。为了使知识表示学习模型适应知识图谱的在线更新并能够应用于语义数据流引擎,建立一种基于改进多嵌入空间的动态知识图谱嵌入模型PUKALE。针对传递闭包等复杂推理场景,提出3种嵌入空间生成算法。为了在进行增量更新时更合理地选择嵌入空间,设计2种嵌入空间选择算法。基于上述算法实现PUKALE模型,并将其嵌入数据流推理引擎CSPARQL-engine中,以实现实时语义数据流推理查询。实验结果表明,与传统的CSPARQL和KALE推理相比,PUKALE模型的推理查询时间分别约降低85%和93%,其在支持动态图谱嵌入的同时能够提升实时语义数据流推理准确率。

关 键 词:语义数据流  数据流引擎  推理  知识表示学习  知识图谱  
收稿时间:2020-12-22
修稿时间:2021-02-03
本文献已被 维普 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号