首页 | 官方网站   微博 | 高级检索  
     


EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum
Authors:Hashimoto Yohey  Yamaguchi Noriko  Takaoka Masaki  Shiota Kenji
Affiliation:
  • a Department of Bioresource Science, Mie University, 1577 Kurima-machiya, Mie 514-8507, Japan
  • b National Institute for Agro-environmental Sciences, Soil Environment Division, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
  • c Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, C-1-3, Nishikyo-ku, Kyoto 615-8540, Japan
  • Abstract:Due to unregulated uses of lead pellets for hunting purposes in Japan, soils and sediments in some river basins and wetlands have become highly contaminated with Pb. Deterioration of natural vegetation has occurred sporadically in these areas, and therefore revegetation is needed for ecological restoration. The objectives of the present study were to assess the effects of surface applications of compost and gypsum amendments on Pb availability to a watercress plant (Nasturtium officinale W.T. Aiton) and molecular-scale speciation of Pb in soil solid phases. The compost and gypsum amendments significantly decreased dissolved Pb and Sb in pore water. The concentration of Pb in aboveground plant tissues was 190 mg kg− 1 in the control soil and was reduced to < 20 mg kg− 1 in the compost and gypsum-amended soils. The concentration of Sb in plants grown in the control soil was 13 mg kg− 1, whereas that in the soils receiving compost and gypsum decreased below detectable levels. Redox potential was higher in vegetated soils (ave. 349 mV) than in the unvegetated soils (ave. 99 mV) due to oxygen introduced by plant roots. Extended X-ray absorption fine structure (EXAFS) spectroscopy illustrated that Pb occurred as Pb sorbed on birnessite and/or ferrihydrite (Pb-Mn/Fe, ~ 60%) and Pb sorbed on organic matter (Pb-org, ~ 15%), and galena (PbS, ~ 10%) in the vegetated and unvegetated control soils. The compost amendment increased the proportion of Pb-org by 2-fold than in the control soils. The amended soils with plant growth decreased the proportion of Pb-Mn/Fe phases by half of that without plant growth. Galena and anglesite (PbSO4) were not detected in compost-amended soils and even in gypsum-amended soils since a significant soil reduction to anoxic levels did not occur in the entire soil. The present study indicated that, under flooded conditions, surface applications of compost and gypsum amendments reduced plant Pb uptake from the Pb contaminated soil.
    Keywords:XAFS  Phytoremediation  Lead  Antimony  Reducing soil  Metal immobilization
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

    京公网安备 11010802026262号