首页 | 官方网站   微博 | 高级检索  
     


Exploiting hierarchy parallelism for molecular dynamics on a petascale heterogeneous system
Authors:Qiang Wu  Canqun Yang  Tao Tang  Liquan Xiao
Affiliation:School of Computer Science, National University of Defense Technology, Changsha, China
Abstract:Heterogeneous systems with nodes containing more than one type of computation units, e.g., central processing units (CPUs) and graphics processing units (GPUs), are becoming popular because of their low cost and high performance. In this paper, we have developed a Three-Level Parallelization Scheme (TLPS) for molecular dynamics (MD) simulation on heterogeneous systems. The scheme exploits multi-level parallelism combining (1) inter-node parallelism using spatial decomposition via message passing, (2) intra-node parallelism using spatial decomposition via dynamically scheduled multi-threading, and (3) intra-chip parallelism using multi-threading and short vector extension in CPUs, and employing multiple CUDA threads in GPUs. By using a hierarchy of parallelism with optimizations such as communication hiding intra-node, and memory optimizations in both CPUs and GPUs, we have implemented and evaluated a MD simulation on a petascale heterogeneous supercomputer TH-1A. The results show that MD simulations can be efficiently parallelized with our TLPS scheme and can benefit from the optimizations.
Keywords:Heterogeneous system   Molecular dynamics   GPU computing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号