首页 | 官方网站   微博 | 高级检索  
     


Effects of polyamide 6 reinforcement on the compatibility of high-density polyethylene/environmental-friendly modified wood fiber composites
Authors:Kaimeng Xu  Zhifeng Zheng  Guanben Du  Yulu Zhang  Zhihui Wang  Tuhua Zhong  Linkun Xie  Siqun Wang
Affiliation:1. Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration;2. Southwest Forestry University, Kunming, 650224 People's Republic of China;3. Southwest Forestry University, Kunming, 650224 People's Republic of China

Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China;4. Composite Materials and Engineering Center, Washington State University, Pullman, Washington, 99164;5. Center for Renewable Carbon, Institute of Agriculture, The University of Tennessee, Knoxville, Tennessee, 37996

Abstract:In order to develop excellent comprehensive mechanical strength and stability in high-density polyethylene (HDPE)/wood fiber (WF) composites, polyamide 6 (PA 6), and WF modified by environmental-friendly high temperature vapor (WF-HTV) were utilized to reinforce the compound system. The properties relating to interfacial compatibility in HDPE/WF-HTV composites were characterized and evaluated by electron universal mechanical instrument, water absorption testing, thermogravimetry, scanning electron microscope, Fourier transfer infrared spectroscopy, and differential scanning calorimetry. The results reveal that this novel compounding system can engender a synergistic effect for interfacial interactions among PA 6, HDPE, and WF-HTV only when the ratio of HDPE to PA 6 is at an optimum level (HDPE:PA 6 = 6:4). The maximum values for flexural strength, modulus, tensile strength, and impact strength can be increased by 82.05, 64.08, 93.47, and 120.45%, respectively, compared with those of HDPE/WF-HTV composites. Additionally, maximum decomposition temperatures for the first and second thermal degradation stages can be increased by 7.17and 8.99 °C, respectively. Water absorption can be effectively controlled at a relatively low level (approximately 1.50%). © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47984.
Keywords:compatibility  environmental-friendly modified wood fiber  high-density polyethylene  Polyamide 6
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号