首页 | 官方网站   微博 | 高级检索  
     

Prediction of Concrete Meso-Model Stress-Strain Curves Based on GoogLeNet北大核心CSCD
作者姓名:周杰  赵婷婷  陈青青  王志勇  王志华
作者单位:1.太原理工大学 机械与运载工程学院 应用力学研究所,太原 030024
基金项目:国家自然科学基金(12072217;11702186);
摘    要:非均质复合材料的宏观力学性能往往取决于细观组分的分布方式和力学性能,但是建立明确的关系表达式极其困难。为了应对这一挑战,以混凝土为研究对象,提出了一种基于深度学习的策略,能够高效、准确地通过细观模型图像信息获取应力-应变曲线。首先,使用基于卷积神经网络(convolutional neural network,CNN)的GoogLeNet模型进行图像信息识别和提取,并针对应力-应变曲线的复杂性特点,进行了数据预处理操作,并且设计了相应的多任务损失函数。数据集中的细观模型图像采用基于Monte-Carlo的随机骨料模型生成,并且使用数值模拟试验获取对应细观模型的单轴压缩应力-应变曲线。最后,通过对神经网络的训练和测试评估了所提出方法的可行性。结果表明,GoogLeNet模型训练效率和预测精度均优于AlexNet和ResNet模型,具有良好的泛化能力和鲁棒性。

关 键 词:混凝土   细观模型   GoogLeNet   卷积神经网络   应力-应变曲线
收稿时间:2021-05-17
本文献已被 维普 等数据库收录!
点击此处可从《应用数学和力学》浏览原始摘要信息
点击此处可从《应用数学和力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号