首页 | 官方网站   微博 | 高级检索  
     


High pressure deformation in two-phase aggregates
Authors:Li Li  Ahmed Addad  Donald Weidner  Hongbo Long  Jiuhua Chen
Affiliation:aMineral Physics Institute, Department of Geosciences, State University of New York at Stony Brook, Stony Brook, NY, 11794-2100, USA;bLaboratoire de Structure et Propriétés de l’État Solide (associated to CNRS), Université des Sciences et Technologies de Lille, F-59655, Villeneuve d’Ascq Cedex, France
Abstract:We investigate the rheological behavior of multi-phase aggregates at high pressure and high temperature. Using synchrotron X-ray radiation as the probing tool, we are able to quantify the stress state of individual phases within the aggregates. This method provides fundamental information in interpreting the behavior of two phase/multi-phase mixtures, which contribute to our understanding of the deformation process at deep earth conditions. We choose MgAl2O4 spinel and MgO periclase as our model materials. Mixtures of various volume proportions were deformed in a multi-anvil high pressure deformation apparatus at pressure of 5 GPa and elevated temperatures. Stress is determined from X-ray diffraction, providing a measure of stress in each individual phase of the mixture in situ during the deformation. Macroscopic strain is determined from X-ray imaging. We compare the steady state strength of various mixtures at 1000 °C and 800 °C and at the strain rate in the range of 1.8 to 8.8 × 10− 5 s− 1. Our data indicate that the weak phase (MgO) is responsible for most of the accumulated strains while the strong phase (spinel) is supporting most of the stress when the volume proportion is 75% spinel and 25% MgO. The intermediate compositions (40/60) are much weaker than either of the end members, while the grain sizes for the intermediate compositions (submicrons) are much smaller than the end members (5–10 μm). We conclude that a change in flow mechanism resulting from these smaller grains is responsible for the low strength of the intermediate composition mixtures. This study demonstrates an approach of using synchrotron X-rays to study the deformation behaviors of multi-phase aggregates at high pressure and high temperature.
Keywords:Aggregate  High pressure  High temperature  Synchrotron X-ray imaging  Stress  Strain
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号