首页 | 官方网站   微博 | 高级检索  
     

任意各向异性介质中三维可控源音频大地电磁正演模拟
引用本文:邱长凯,殷长春,刘云鹤,陈辉,刘玲,蔡晶.任意各向异性介质中三维可控源音频大地电磁正演模拟[J].地球物理学报,2018,61(8):3488-3498.
作者姓名:邱长凯  殷长春  刘云鹤  陈辉  刘玲  蔡晶
作者单位:1. 吉林大学地球探测科学与技术学院, 长春 130026; 2. 东华理工大学放射性地质与勘探技术国防重点学科实验室, 南昌 330013
基金项目:国家自然科学基金重点项目(41530320)及面上项目(41774125),国家重点研发计划重点专项(2017YFC0601900,2016YFC0303100),中国科学院先导专项(XDA14020102)和中央级公益性科研院所基本科研业务费专项经费(JYYWF20180103)联合资助.
摘    要:在一些地层层理发育的地区,地下介质存在显著的电各向异性,此时基于各向同性模型解释含各向异性效应的可控源音频大地电磁(CSAMT)测深观测数据会导致错误的结果.本文通过引入3×3的对称正定张量表征电导率各向异性,采用非结构四面体网格和矢量有限元方法离散电场满足的矢量Helmholtz方程,并将电磁场源等效为系列电偶极子,实现任意各向异性介质中CSAMT高效数值模拟.本文首先通过层状各向异性模型检验三维有限元算法的精度和有效性,进一步建立三维地电模型研究异常体各向异性和围岩各向异性对CSAMT响应的影响,最后使用视电阻率极性图来识别各向异性电导率主轴方向.数值模拟结果表明,各向异性电导率对CSAMT视电阻率幅值及分布规律都有很大影响,视电阻率极性图能够很好地识别各向异性主轴方向.

关 键 词:可控源音频大地电磁  各向异性  矢量有限元  三维正演  
收稿时间:2017-05-27

3D forward modeling of controlled-source audio-frequency magnetotellurics in arbitrarily anisotropic media
QIU ChangKai,YIN ChangChun,LIU YunHe,CHEN Hui,LIU Ling,CAI Jing.3D forward modeling of controlled-source audio-frequency magnetotellurics in arbitrarily anisotropic media[J].Chinese Journal of Geophysics,2018,61(8):3488-3498.
Authors:QIU ChangKai  YIN ChangChun  LIU YunHe  CHEN Hui  LIU Ling  CAI Jing
Affiliation:1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China; 2. Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013, China
Abstract:Controlled-source audio-frequency magnetotellurics (CSAMT) is playing an important role in shallow subsurface exploration. Most current three-dimensional (3D) forward modeling for CSAMT are based on an isotropic earth model which neglects the electrical anisotropy in the earth. Here we implement a 3D vector finite-element modeling algorithm to solve the frequency-domain Helmholtz equation for the total electrical field and analyze the effect of earth anisotropy on tensor CSAMT apparent resistivity responses. First we introduce a 3×3 positive-definite conductivity tensor to represent the arbitrarily electrical anisotropy. Then we discretize the weak-form of vector Helmholtz equation with an unstructured tetrahedral grid and lowest order of Nédélec vector basis functions. Besides, we approximate the horizontal transmitting sources for CSAMT by a series of electrical dipoles and solve the final system of equations with the direct solver MUMPS that can speed up the forward modeling while guaranteeing the numerical precision. We compare our 3D numerical results with one-dimensional solutions for a layered anisotropic earth to verify the accuracy and reliability of the proposed 3D anisotropic finite element algorithm. To further explore the anisotropic effect of a 3D anomalous body and host rock, we design a conductive brick model embedded in a homogeneous half-space. Then, we rotate the principal conductivity tensor of the anomalous body and host rock around x-axis and z-axis separately, and simulate the apparent resistivity for tensor CSAMT. Numerical results show that both the amplitude and distribution pattern of the CSAMT apparent resistivity vary with the anisotropic conductivity tensors. To recognize the electrical anisotropy of the earth, we show the CSAMT apparent resistivity in polar plots, thus one can clearly identify the principal axis of the anisotropic conductivity.
Keywords:CSAMT  Anisotropy  Vector finite-element  3D forward modeling
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号