首页 | 官方网站   微博 | 高级检索  
     

Ti0.7W0.3O2@BiVO4 p-n复合异质结构界面光催化剂的制备及其可见光催化降解苯酚机理的研究
引用本文:董泽民,周仁丹,熊乐艳,李卓,李涵,樊晶,郭赞如,郑龙珍. Ti0.7W0.3O2@BiVO4 p-n复合异质结构界面光催化剂的制备及其可见光催化降解苯酚机理的研究[J]. 环境科学学报, 2020, 40(5): 1674-1691. DOI: 10.13671/j.hjkxxb.2020.0002
作者姓名:董泽民  周仁丹  熊乐艳  李卓  李涵  樊晶  郭赞如  郑龙珍
作者单位:华东交通大学,化学化工系,南昌330013;江西省兽药饲料监察所,南昌330096,南昌大学,分析测试中心,南昌330047,华东交通大学,化学化工系,南昌330013,江西省烟草科学研究所,南昌330000,广东省科学院,广州510070,江西省兽药饲料监察所,南昌330096,华东交通大学,化学化工系,南昌330013,华东交通大学,化学化工系,南昌330013
基金项目:国家自然科学基金(No.21465011,21802041);江西省自然科学基金(No.20192BAB206014,20132BAB203012);江西省教育厅科学技术研究项目(No.180304)
摘    要:设计并制备了新型Ti0.7W0.3O2/BiVO4 p-n复合异质结构界面光催化剂应用于可见光条件下降解模拟含苯酚污染物的废水.采用粉末X射线衍射(PXRD)、扫描电镜(SEM)、固体粉末紫外漫反射(DRS)及X射线光电子能谱(XPS)等技术表征了Ti0.7W0.3O2/BiVO4 p-n复合异质结构界面的性状.结果显示BiVO4纳米粒子均匀地分布在Ti0.7W0.3O2纳米颗粒周围并构筑了稳定的p-n复合异质结构界面.Ti0.7W0.3O2/BiVO4 p-n复合异质结构界面光催化剂具有更宽的可见光响应范围和更低的能带宽度.纯BiVO4和Ti0.7W0.3O2

关 键 词:Ti0.7W0.3O2/BiVO4  p-n复合异质结构  苯酚  中间产物  光降解机理
收稿时间:2019-11-05
修稿时间:2020-01-07

Preparation of Ti0.7 W0.3 O2@BiVO4 p-n compound heterostructure interfacial photocatalyst and the research on the photocatalytic degradation mechanism of phenol under the visible light
DONG Zemin,ZHOU Rendan,XIONG Leyan,LI Zhuo,LI Han,FAN Jing,GUO Zanru and ZHENG Longzhen. Preparation of Ti0.7 W0.3 O2@BiVO4 p-n compound heterostructure interfacial photocatalyst and the research on the photocatalytic degradation mechanism of phenol under the visible light[J]. Acta Scientiae Circumstantiae, 2020, 40(5): 1674-1691. DOI: 10.13671/j.hjkxxb.2020.0002
Authors:DONG Zemin  ZHOU Rendan  XIONG Leyan  LI Zhuo  LI Han  FAN Jing  GUO Zanru  ZHENG Longzhen
Affiliation:1. Department of Chemistry and Chemical Engineering, East China Jiao Tong University, Nanchang 330013;2. Jiangxi Institute of Veterinary and Feed Control, Nanchang 330096,Analysis and testing center, Nanchang University, Nanchang 330047,Department of Chemistry and Chemical Engineering, East China Jiao Tong University, Nanchang 330013,Tobacco Science Institute of Jiangxi Province, Nanchang 330000,Guangdong Academy of Sciences, Guangzhou 510070,Jiangxi Institute of Veterinary and Feed Control, Nanchang 330096,Department of Chemistry and Chemical Engineering, East China Jiao Tong University, Nanchang 330013 and Department of Chemistry and Chemical Engineering, East China Jiao Tong University, Nanchang 330013
Abstract:The Ti0.7W0.3O2/BiVO4 p-n compound heterostructure interfacial photocatalyst (CHIP) was designed and prepared for photocatalytic degradation of phenol pollutant in waste water. The detailed properties of the Ti0.7W0.3O2/BiVO4 p-n CHIP were analyzed by XRD, SEM, DRS and XPS technologies, showing that BiVO4 nanoparticles (NPs) were uniformly dispersed on the surface of Ti0.7W0.3O2 NPs and formed the p-n compound heterostructure. A greatly broaden the light response range and a shorter band gap energy for Ti0.7W0.3O2/BiVO4 p-n CHIP. The conduction band of BiVO4 and Ti0.7W0.3O2 NPs were measured based on the results of the valence band and band gap energy obtained via XPS and DRS, and then the energy level diagram of Ti0.7W0.3O2/BiVO4 p-n CHIP was proposed. The photocatalytic degradation of phenol at Ti0.7W0.3O2/BiVO4 p-n CHIP with different loading ratios of Ti0.7W0.3O2 NPs was investigated with optimum conditions (i.e., pH of 4.5, catalyst dosage of 0.60 g·L-1 and phenol initial concentration of 95 mg·L-1) under the illumination of visible light. The 5wt% Ti0.7W0.3O2/BiVO4 p-n CHIP exhibited the highest photocatalytic activity and the initial rate constant (k) was calculated as 0.01137 min-1. After recycling six times, the Ti0.7W0.3O2/BiVO4 p-n CHIP showed a good stability and recyclability.The capture results of free radicals showed that three kinds of free radicals have participated in the process of photocatalytic degradation of phenol, and oxidizing ability order was hydroxyl free radical (·OH-) > superoxide anion free radical (·O2-) > photoproduction holes (h+). The results of the TOC showed that phenol was first produced the intermediates, and then all the intermediates changed into inorganic finally. Hydroxyl free radical (·OH-) involved initial reaction at the Ti0.7W0.3O2/BiVO4 p-n CHIP was evidenced by Terephthalic Acid (TA) Fluorescence Probe. Besides, UV-Vis spectroscopy and UHPLC-MS technologies were used to analyze main intermediates of photocatalytic degradation of phenol. The probable photocatalytic degradation mechanism of phenol at the Ti0.7W0.3O2/BiVO4 p-n CHIP was also proposed.
Keywords:Ti0.7W0.3O2/BiVO4  p-n compound heterostructure  phenol  photocatalytic degradation intermediates  photocatalytic degradation mechanism
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号