首页 | 官方网站   微博 | 高级检索  
     


Scaling of analog LDPC decoders in sub-100 nm CMOS processes
Authors:M Meysam Zargham [Author Vitae]  Christian Schlegel [Author Vitae]
Affiliation:a Electrical Engineering Department, University of Toronto, Canada
b Electrical Engineering Department, University of Alberta, Canada
c Electronics Department of Telecom Bretagne, France
Abstract:Analog implementations of digital error control decoders, generally referred to as analog decoding, have recently been proposed as an energy and area competitive methodology. Despite several successful implementations of small analog error control decoders, little is currently known about how this methodology scales to smaller process technologies and copes with the non-idealities of nano-scale transistor sizing. A comprehensive analysis of the potential of sub-threshold analog decoding is examined in this paper. It is shown that mismatch effects dominated by threshold mismatch impose firm lower limits on the sizes of transistors. The effect of various forms of leakage currents is also investigated and minimal leakage current to normalizing currents are found using density evolution and control simulations. Finally, the convergence speed of analog decoders is examined via a density evolution approach. The results are compiled and predictions are given which show that process scaling below 90 nm processes brings no advantages, and, in some cases, may even degrade performance or increase required resources.
Keywords:Analog decoders  Sub-threshold  Mismatch  FEC decoders  LDPC  Sum-product  Leakage currents  Short-channel effects  Threshold voltage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号