首页 | 官方网站   微博 | 高级检索  
     


Diagenesis and Diagenetic Evolution of Deltaic and Neritic Gas-Bearing Sandstones in the Lower Mingyuefeng Formation of Paleogene, Lishui Sag, East China Sea Shelf Basin: Implications for Depositional Environments and Sequence Stratigraphy Controls
Authors:XU F  ZHANG Penghui  ZHANG Jinliang  LIU Jinshui  HOU Guowei  ZHANG Ming  LI Jingzhe  LIU Shash  GUO Jiaqi and MENG Ningning
Affiliation:1 Shanghai Branch of CNOOC Ltd., Shanghai 200030, China,2 Qingdao Institute of Marine Geology, Qingdao 266071, Shandong, China 3 College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China,3 College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China,1 Shanghai Branch of CNOOC Ltd., Shanghai 200030, China,1 Shanghai Branch of CNOOC Ltd., Shanghai 200030, China,3 College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China,3 College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China,3 College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China,3 College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China and 4 College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China
Abstract:Gas-bearing deposits in the Lower Mingyuefeng Formation of Paleogene, Lishui Sag, East China Sea Shelf Basin consist of shoreface sandstones of the highstand systems tract (HST) and transgressive systems tract (TST), and deltaic sandstones of the lowstand systems tract (LST) and falling stage systems tract (FSST). Detailed petrographic observations suggest that the diagenetic features and related evolution of these deposits cannot be simply characterized and demonstrated in the depth domain. However, the occurrence of diagenetic minerals systematically depends on the studied interval within the HST, TST, LST, and FSST; therefore, diagenesis in this region can be better constrained when studied in the context of the depositional environments and sequence stratigraphic framework. The eogenetic processes in such settings include: (1) microcrystalline siderite precipitated as concretions in almost all environments and systems tracts, which inhibited further mechanical compaction; (2) grain dissolution and kaolinitization occurred in shoreface HST sandstones and deltaic LST and FSST sandstones; (3) glaucony was locally observed, which did not clearly reflect the controls of facies or sequence stratigraphy; and (4) cementation by pyrite aggregates occurred in the shoreface HST sandstones and deltaic LST sandstones. The mesogenetic diagenesis includes: (1) partial conversion of kaolinite into dickite in deltaic LST sandstones, and minor chlorite cementation in deltaic FSST sandstones; (2) transformation of kaolinite into illite and quartz cementation in deltaic LST and FSST sandstones; (3) frequent precipitation of ankerite and ferroan calcite in shoreface TST sandstones and early HST sandstones, forming baffles and barriers for fluid flow, with common calcite in shoreface HST sandstones as a late diagenetic cement; and (4) formation of dawsonite in the deltaic LST and FSST sandstones, which is interpreted to be a product of the invasion of a CO2-rich fluid, and acts as a good indicator of CO2-bearing reservoirs. This study has thus constructed a reliable conceptual model to describe the spatial and temporal distribution of diagenetic alterations. The results may provide an entirely new conceptual framework and methodology for successful gas exploration in the continental margins of offshore China, thus allowing us to predict and unravel the distribution and quality evolution of clastic reservoirs at a more detailed and reliable scale.
Keywords:diagenetic alteration  depositional environment  sequence stratigraphy  reservoir quality  Paleogene  East China Sea Shelf Basin
本文献已被 CNKI 等数据库收录!
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号