首页 | 官方网站   微博 | 高级检索  
     


Reductive amination of cyclohexanol/cyclohexanone to cyclohexylamine using SBA-15 supported copper catalysts
Authors:Sateesh Kumar Beepala  Harisekhar Mitta  Hussain Sk  Putrakumar Balla  V.R Chary Komandur
Affiliation:1. Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India;2. Department of Energy Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
Abstract:Amination of cyclohexanol was investigated in vapour phase over copper catalysts supported on mesoporous SBA-15. The different products identified during reductive amination of cyclohexanol reaction were cyclohexanone, cyclohexylamine, along with small amounts of N-Cyclohexylidinecyclohexylamine and dicyclohexylamine. Among several catalysts tested for the reductive amination, 5% Cu supported on SBA-15 exhibited better catalytic performance than other catalysts with 36% selectivity towards cylclohexylamine at 80% cyclohexanol conversion. The optimum reaction conditions employed to achieve the best catalyst performance were at 250 °C, 0.1 MPa of H2/NH3, TOS-10h. The active Cu sites, acidity of the catalyst, and effect of reaction parameters play a pivotal role in the reductive amination reaction. The prepared catalysts were characterized by XRD, BET, SEM, H2-TPR and NH3-TPD. The dispersion of Cu, particle size, and metal surface area (m2/g) calculated from pulse N2O decomposition method. TPR findings reveal the presence of substantially dispersed copper oxide species at lower loadings which is easily reducible than the bulk copper oxide species found at higher Cu loadings. The acidity measurements by NH3-TPD analysis suggest that the maximum acidic strength was obtained at 5 wt% copper on porous SBA-15, and decreased with Cu loadings. The catalytic properties are well in agreement with the findings of catalysts characterization.
Keywords:Corresponding author.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号