首页 | 官方网站   微博 | 高级检索  
     


Solar thermochemical gasification of wood biomass for syngas production in a high-temperature continuously-fed tubular reactor
Authors:Quentin Bellouard  Stéphane Abanades  Sylvain Rodat  Nathalie Dupassieux
Affiliation:1. Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font-Romeu, France;2. Univ. Grenoble Alpes, INES, BP 332, 50 Avenue du Lac Léman, F-73375 Le-Bourget-du-lac, France;3. CEA-LITEN Laboratoire des Systèmes Solaires Haute Température (LSHT), F-38054 Grenoble, France
Abstract:Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000 °C to 1400 °C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. This biomass was used under its non-altered pristine form but also dried or torrefied. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature, oxidizing agent (H2O or CO2) or type of biomass feedstock on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400 °C.
Keywords:Concentrated solar energy  Hydrogen  Biomass  Pyrolysis  Gasification  Solar reactor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号