首页 | 官方网站   微博 | 高级检索  
     


OH~- absorption and nonvolatile holographic storage properties in Mg:Ru:Fe:LiNbO_3 crystal as a function of Mg concentration
Affiliation:a School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China;b Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
Abstract:Mg:Ru:Fe:LiNbO3 crystals with various concentrations of MgO (in mole) and fixed content of RuO2 and Fe2O3 (in mass) are grown with the Czochralski method from the congruent melt. Their infrared transmission spectra are measured and discussed to investigate the defect structure. With the increase of Mg2+ concentration the blue nonvolatile holographic storage capability is enhanced. The nonvolatile holographic storage properties of dual-wavelength recording of Mg(7 mol%):Ru:Fe:LiNbO3 nonvolatile diffraction efficiency, response time, and nonvolatile sensitivity reach 59.8%, 70 s, and 1.04 cm/J, respectively. Comparing Mg(7 mol%):Ru:Fe:LiNbO3 with Ru:Fe:LiNbO3 crystal, the response time is shortened apparently. The nonvolatile diffraction efficiency and sensitivity are raised largely. The mechanism in blue photorefractive nonvolatile holographic storage is discussed.
Keywords:Mg  Ru  Fe  LiNbO  crystal  infrared spectroscopy  nonvolatile holographic properties
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号