首页 | 官方网站   微博 | 高级检索  
     


In‐Plane Lithium Growth Enabled by Artificial Nitrate‐Rich Layer: Fast Deposition Kinetics and Desolvation/Adsorption Mechanism
Authors:Xianshu Wang  Huirong Wang  Mingzhu Liu  Weishan Li
Abstract:An artificial lithium‐nitrate (LiNO3)‐rich layer (LN‐RL) is developed to address dendritic lithium (Li) growth by a fusing–infusing strategy, in which LiNO3 is loaded into stainless steel mesh and a Li‐metal anode (LN‐RL@Li) is obtained by casting this LN‐RL onto Li foil. The LN‐RL enables fast Li deposition kinetics in carbonates and endows LN‐RL@Li with excellent cycleability. The underneath mechanism on the contribution of LN‐RL is uncovered by detailed characterizations combining with theoretical simulations. The LN‐RL promotes the desolvation and capacitive adsorption of Li ions and induces in‐plane Li growth along the edges of preplated Li with planar morphology. The improved cycleability of LN‐RL(@Li) is demonstrated by Li∥Cu cell that presents a coulombic efficiency of 97.2% after 280 cycles and Li∥Li cell that proceeds over 1000 h at 0.5 mA cm?2 in carbonates. Additionally, the Li∥LiFePO4 cell shows a capacity retention of 58% after 400 cycles at 1 C (1 C = 170 mA g?1), compared to the 35% after 180 cycles for the control. This work presents not only a promising strategy for practical applications of Li‐metal batteries, but also a new understanding on the role of nitrate in Li plating/stripping kinetics.
Keywords:adsorption  desolvation  in‐plane Li growth  Li‐metal anodes  lithium‐nitrate‐rich layers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号