首页 | 官方网站   微博 | 高级检索  
     


Early detection of resistance to tebufenozide in field populations of Cydia pomonella L.: methods and mechanisms
Authors:C Ioriatti  M Tasin  P J Charmillot  M Reyes  B Sauphanor
Affiliation:IASMA Research Center, Plant Protection Department, San Michele all'Adige, TN, Italy;;IASMA Research Center, SafeCrop Centre, San Michele all'Adige, Italy;;Agroscope Changins-Wädenswil, Nyon, Switzerland;;PSH, Ecologie de la Production Intégrée, INRA Site Agroparc, Avignon Cedex, France
Abstract:Abstract: Four populations of codling moth Cydia pomonella L. were collected as overwintering larvae from apple orchards with different pesticide pressure (S. Michele, Roncafort, Revò and Vervò) in the Trento province (northern Italy). Mortality rate caused by a predetermined discriminating concentration of tebufenozide topically applied on overwintering larvae was evaluated. Neonate F1 progeny of the same populations were assayed for susceptibility to tebufenozide by feeding them on thinning apples treated with an appropriate discriminating dose of the insecticide. The activities of the main enzyme systems involved in the detoxification of insecticides were also evaluated in each population and related to their susceptibility to tebufenozide. The topical test detected a significant loss in susceptibility to tebufenozide in two populations, S. Michele and Roncafort, while all the overwintering larvae collected in the orchards of Revò and Vervò died when treated topically with the discriminating concentration. The apple‐dipping test performed on the neonate larvae showed a highly significant reduction in the susceptibility of the two populations of S. Michele and Roncafort. A less significant reduction in mortality rate was found in the Revò population; however, no statistical difference was found between the Vervò population and the susceptible reference. None of the four field populations significantly differed from the susceptible strain for Glutathione‐S‐transferase and esterase activity. A significantly higher frequency of individuals of the S. Michele and Roncafort populations exhibited a higher mixed function oxidase activity than the susceptible strain. The small resistance ratio values found for the two populations together with the low frequency of individuals exibiting enhanced enzymatic activity, reveals that the selection process was still at the early stage. Because of its efficiency in early detection of resistance to tebufenozide, topical application on diapausing larvae can thus be considered an appropriate, simple and robust tool for implementing resistance monitoring programmes for tebufenozide.
Keywords:bioassay  codling moth  detoxication  resistance detection  tebufenozide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号